Rút gọn
a) (x+1)(x^2-x+1)-x^3
b) (x-2)^2-x(x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (x+1)(3-x)(x-2)2
\(=\left(3x-x^2+3-x\right)\left(x^2-4x+4\right)\)
\(=\left(-x^2+2x+3\right)\left(x^2-4x+4\right)\)
\(=-x^4+4x^3-4x^2+2x^3-8x^2+8x+3x^2-12x+12\)
\(=-x^4+6x^3-9x^2-4x+12\)
b: \(9x\left(1-x\right)+\left(3x-2\right)\left(3x+2\right)\)
\(=9x-9x^2+\left(3x\right)^2-4\)
\(=9x-9x^2+9x^2-4=9x-4\)
a) \(\left(x+3\right)^2+\left(x-3\right)^2+2\left(x^2+9\right)\)
\(=\left(x+3\right)^2+2\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left[\left(x+3\right)+\left(x-3\right)\right]^2\)
\(=\left(x+3+x-3\right)^2\)
\(=\left(2x\right)^2\)
\(=4x^2\)
b) \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=\left(64x^3-48x^2+12x-1\right)-\left(64x^3+12x-48x^2-9\right)\)
\(=64x^3-48x^2+12x-1-64x^3-12x+48x^2+9\)
\(=\left(64x^3-64x^3\right)-\left(48x^2-48x^2\right)+\left(12x-12x\right)-\left(1-9\right)\)
\(=0-0+0+8\)
\(=8\)
a) (x + 3)² + (x - 3)² + 2(x² - 9)
= (x + 3)² + 2(x + 3)(x - 3) + (x - 3)²
= (x + 3 + x - 3)²
= (2x)²
= 4x²
b) (4x - 1)³ - (4x - 3)(16x² + 3)
= 64x³ - 48x² + 12x - 1 - 64x³ - 12x + 48x² + 9
= (64x³ - 64x³) + (-48x² + 48x²) + (12x - 12x) + (-1 + 9)
= 8
A. ĐKXĐ: $x>0; x\neq 1; x\neq 4$
\(A=\left[\frac{x-\sqrt{x}+2}{(\sqrt{x}+1)(\sqrt{x}-2)}-\frac{x}{\sqrt{x}(\sqrt{x}-2)}\right].\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\left[\frac{x-\sqrt{x}+2}{(\sqrt{x}+1)(\sqrt{x}-2)}-\frac{\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}-2)}\right].\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{-2(\sqrt{x}-1)}{(\sqrt{x}+1)(\sqrt{x}-2)}.\frac{\sqrt{x}-2}{\sqrt{x}-1}=\frac{-2}{\sqrt{x}+1}\)
B.
ĐKXĐ: $x\geq 0, x\neq \frac{1}{4}$
\(B=\frac{2\sqrt{x}-1+2\sqrt{x}+1}{(2\sqrt{x}+1)(2\sqrt{x}-1)}.(1-4x)=\frac{4\sqrt{x}}{4x-1}(1-4x)=-4\sqrt{x}\)
Lời giải:
a. ĐKXĐ: $x\neq 0;-1$
\(=\left(\frac{2x^2+3x}{(x+1)(x^2-x+1)}+\frac{x+1}{(x+1)(x^2-x+1)}\right).\frac{x^2-x+1}{x}\)
\(=\frac{2x^2+3x+x+1}{(x+1)(x^2-x+1)}.\frac{x^2-x+1}{x}=\frac{2x^2+4x+1}{x(x+1)}\)
b. ĐKXĐ: $x\neq 0; 1;2$
\(=\frac{x-(x-1)}{x(x-1)}:\frac{(x+1)(x-1)-(x-2)(x+2)}{(x-2)(x-1)}=\frac{1}{x(x-1)}:\frac{3}{(x-2)(x-1)}\)
\(=\frac{1}{x(x-1)}.\frac{(x-2)(x-1)}{3}=\frac{x-2}{3x}\)
c. ĐKXĐ: $x\neq 0; -1$
\(=\frac{x+1+x^2}{x(x+1)}.\frac{x(x+1)}{x}=\frac{x^2+x+1}{x}\)
a) Ta có: \(A=\left(\dfrac{x-\sqrt{x}+2}{x-\sqrt{x}-2}-\dfrac{x}{x-2\sqrt{x}}\right):\dfrac{1-\sqrt{x}}{2-\sqrt{x}}\)
\(=\left(\dfrac{x-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)
\(=\dfrac{x-\sqrt{x}+2-x-\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)
\(=\dfrac{-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=-\dfrac{2}{\sqrt{x}+1}\)
b) Ta có: \(B=\left(\dfrac{1}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}-1}\right):\dfrac{1}{1-4x}\)
\(=\dfrac{2\sqrt{x}-1+2\sqrt{x}+1}{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\cdot\dfrac{-\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{1}\)
\(=-4\sqrt{x}\)
\(a,=\dfrac{x^4\left(x-2\right)+2x^2\left(x-2\right)-3\left(x-2\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x^4+2x^2-3\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x^4-x^2+3x^2-3\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x-1\right)\left(x^2+3\right)}{x+4}\)
\(b,=\dfrac{x^4-3x^2-x^2+3}{x^4-x^2+7x^2-7}=\dfrac{\left(x^2-3\right)\left(x^2-1\right)}{\left(x^2+7\right)\left(x^2-1\right)}=\dfrac{x^2-3}{x^2+7}\\ c,=\dfrac{\left(x^3-1\right)\left(x+1\right)}{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}\\ =\dfrac{\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)}{\left(x^2+1\right)\left(x^2+x+1\right)}=\dfrac{x^2-1}{x^2+1}\)
\(A=5x^2-3x-x^3+x^2+x^3-62x-10+3x\\ A=6x^2-62x-10\\ B=x^3+x^2+x-x^3-x^2-x+5=5\\ C=3x^2y-15xy^2+15xy^2-10y^3+10y^2-3x^2y-4=-4\)
b: Ta có: \(B=x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
\(=x^3+x^2+x-x^3-x^2-x+5\)
=5
Bài 1:
a) \(\dfrac{a+\sqrt{a}}{\sqrt{a}}=\sqrt{a}+1\)
b) \(\dfrac{\sqrt{\left(x-3\right)^2}}{3-x}=\dfrac{\left|x-3\right|}{3-x}=\pm1\)
Bài 2:
a) \(\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}=\pm\dfrac{1}{3x+1}\)
b) \(4-x-\sqrt{x^2-4x+4}=4-x-\left|x-2\right|=\left[{}\begin{matrix}6-2x\left(x\ge2\right)\\2\left(x< 2\right)\end{matrix}\right.\)
a) (x+1)(x^2-x+1)-x^3
= x^3+1 - x^3 =1
b) (x-2)^2 -x(x+2)
= x^2 -4x+4-x^2-2x
=-6x+4
=-2(3x-2)