Tính: \(\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)^2\)
Làm ơn giúp mình với T^T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{\left(5\sqrt{3}+5\sqrt{2}\right).\left(5-2\sqrt{6}\right)}{5\sqrt{3}-5\sqrt{2}}\)
\(=\frac{\left(5\sqrt{3}+5\sqrt{2}\right)^2.\left(5-2\sqrt{6}\right)}{\left(5\sqrt{3}+5\sqrt{2}\right)\left(5\sqrt{3}-5\sqrt{2}\right)}\)\(=\frac{\left(75+50\sqrt{6}+50\right).\left(5-2\sqrt{6}\right)}{75-50}\)
\(=\frac{25\left(5+2\sqrt{6}\right).\left(5-2\sqrt{6}\right)}{25}=5^2-\left(2\sqrt{6}\right)^2\)\(=25-24=1=VP\)
bn chép lại đề nhé
\(=\frac{\left(5\sqrt{3}+5\sqrt{2}\right)\left(5-2\sqrt{6}\right)}{5\sqrt{3}-5\sqrt{2}}\)
\(=\frac{\left(75+50\sqrt{6}+50\right)\left(\sqrt{3}-\sqrt{2}\right)}{75-50}\)
=\(\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right).\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\left[\left(\sqrt{x}+\sqrt{y}\right)-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right].\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
Mình gi rút gọn bạn tự hiểu nha:
\(\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
=\(\left(\sqrt{x}-\sqrt{y}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{x-y}\right).\frac{\sqrt{x}+\sqrt{y}}{x+y-\sqrt{xy}}\)
=\(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x+y-\sqrt{xy}}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)}{\left(x-y\right)\left(x+y-\sqrt{xy}\right)}\)
=
\(P=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\frac{1-xy+x+y+2xy}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}.\)
\(P=\frac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{1+x+y+xy}\)
\(P=\frac{2\sqrt{x}}{1+x+y+xy}\)Với ĐK \(x\ge0\) và \(y\ge0\)Và \(xy\ne1\)
Nguyễn Ngọc Anh Minh bạn làm sai rồi kìa bước cuối cùng vẫn còn \(2y\sqrt{x}\)
\(\left(2+1+3.\sqrt[3]{2}\left(\sqrt[3]{2}+1\right)\right)\left(\sqrt[3]{2}-1\right)\)
=\(\left(3+3\sqrt[3]{4}+3\sqrt[3]{2}\right)\left(\sqrt[3]{2}-1\right)\)
=\(3\sqrt[3]{2}+6+3\sqrt[3]{4}-3-3\sqrt[3]{4}-3\sqrt[3]{2}\)
=3
\(=\frac{x-1}{2\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{x-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1-\sqrt{x}-1\right)\left(\sqrt{x}-1+\sqrt{x}+1\right)}{2\sqrt{x}}\)
\(=\frac{-2.2\sqrt{x}}{2}\)
\(=-2\sqrt{x}\)
Thank bạn bài vừa rồi đã k cho mk^^
\(\frac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)
\(=\frac{\left(5\sqrt{3}+5\sqrt{2}\right)\left(5-2\sqrt{6}\right)}{5\sqrt{3}-5\sqrt{2}}\)
\(=\frac{5\left(\sqrt{3}+\sqrt{2}\right)\left(3-2.\sqrt{3}.\sqrt{2}+2\right)}{5\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\frac{5\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)^2}{5\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)=1\)
DÀI QUÁ MK KO GHI ĐƯỢC NÊN VIẾT KQ LUÔN NHA !!!
ĐẲNG THỨC ĐÓ = 1 NHA Hatsune Miku !
\(=\left(\sqrt{2-\sqrt{3}}\right)^2-2\sqrt{\left(\sqrt{2-\sqrt{3}}\right)\left(\sqrt{2+\sqrt{3}}\right)}+\left(\sqrt{2+\sqrt{3}}\right)^2\)
\(=2-\sqrt{3}-2\sqrt{4-3}+2+\sqrt{3}\)
\(=4-2\)
\(=2\)
bằng 4.
dùng hđt như bình thường thôi