cho a,b,c là 3 cạnh tam giác chứng minh (a+b+c)^2<=9abc với a<=b<=c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét : \(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{a+c}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
Cộng từng vế => \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)
+) Lại có: a;b; c là 3 cạnh của tam giác nên a < b+ c; b < a+ c; c< a+ b
=> \(\frac{a}{b+c}<1;\frac{b}{c+a}<1;\frac{c}{b+a}<1\)
\(\frac{a}{b+c}<1\Rightarrow\frac{a}{b+c}<\frac{a+a}{b+c+a}=\frac{2a}{a+b+c}\)
tương tự, \(\frac{b}{c+a}<\frac{2b}{a+b+c};\frac{c}{a+b}<\frac{2c}{a+b+c}\)
=> \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\) (2)
Từ (1)(2) => đpcm
Theo đề bài :
\(a\le b\le c\Rightarrow\left(a+b+c\right)^2\le\left(2b+c\right)^2\)
Ta thấy \(\left(2b+c\right)^2-9bc\)
\(=4b^2+c^2+4bc-9bc\)
\(=4b^2+c^2-5bc\)
\(=4b^2-4bc+c^2-bc\)
\(=4b\left(b-c\right)-c\left(b-c\right)\)
\(\Rightarrow\left(2b+c\right)^2-9bc=\left(b-c\right)\left(4b-c\right)\left(1\right)\)
\(a\le b\le c\Rightarrow c< a+b\le2b< 4b\)
\(\Rightarrow\left\{{}\begin{matrix}4b-c>0\\b-c\le0\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\left(2b+c\right)^2-9bc=\left(b-c\right)\left(4b-c\right)\le0\)
\(\Rightarrow\left(2b+c\right)^2\le9bc\)
\(\Rightarrow\left(a+b+c\right)^2\le9bc\left(dpcm\right)\)
Nên sửa lại đề bài \(\left(a+b+c\right)^2\le9abc\rightarrow\left(a+b+c\right)^2\le9bc\), bạn xem lại đề bài nhé!
cho a,b,c là 3 cạnh tam giác chứng minh (a+b+c)^2<=9abc với a<=b<=c mình ko biết