CMR 10^12+2:3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/10>3/15
3/11>3/15
3/12>3/15
3/13>3/15
3/14>3/15
=>S>3/15*5=15/15=1
3/11<3/10
3/12<3/10
3/13<3/10
3/14<3/10
=>3/11+3/12+3/13+3/14+3/10<3/10*5=15/10=3/2<2
=>1<S<2
Phân tích ra \(6^9\cdot2^{10}+12^{10}=\left(2\cdot3\right)^9\cdot2^{10}+\left(3\cdot4\right)^{10}=2^9\cdot3^9\cdot2^{10}+3^{10}\cdot\left(2^2\right)^{10}=2^{19}\cdot3^9+\left(-3\right)^{10}\cdot2^{20}\)
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{9}+\frac{3}{9}+\frac{3}{9}+\frac{3}{9}+\frac{3}{9}=\frac{15}{9}< \frac{18}{9}=2\)
Suy ra đpcm.
S < 3/10 +3/10 +3/10 + 3/10 + 3/10 = 15/ 10 < 20/10 =2
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
Ta có: S =3/10+3/11+3/12+3/13+3/14 = 3.(1/10+1/11+1/12+1/13+1/14) > 3.(1/15 + 1/15 + 1/15 + 1/15 + 1/15) = 3.5/15 = 1 => S > 1 (1)
S=3/10+3/11+3/12+3/13+3/14 = 3.(1/10+1/11+1/12+1/13+1/14) < 3.(1/10 + 1/10 + 1/10 + 1/10 + 1/10) = 3.5/10 = 3/2<2 =>S <2 (2)
Từ (1) va (2)
=> 1 < S < 2 (đpcm).
Chúc bạn học tập tốt :)
\(A=\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{199}+\dfrac{1}{200}\\ >\dfrac{1}{10}+\left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)\left(90so\right)+\left(\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\right)\left(100so\right)\\ A>\dfrac{1}{10}+\dfrac{90}{100}+\dfrac{100}{200}=1+\dfrac{1}{2}=\dfrac{3}{2}\left(đpcm\right).\)
Ta có:
\(10^{12}=1...0\)
\(\Rightarrow10^{12}+2=1..0+2=1...2\)
Mà:
\(1...2=1+0+...+0+2=3\) ⋮ 3
\(\Rightarrow10^{12}+2\) ⋮ 3
Ta có :
\(10^{12}+2=100...0\left(12.số0\right)+2\) có tổng các chữ số là \(1+0+...+0+2=3⋮3\) ( 12 chữ số 0)
\(\Rightarrow10^{12}+2⋮3\)