Chứng minh: x2+y2-x+2y+4>0 với mọi x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn xem lại đề nhé: Ví dụ chọn x=2, y=1 ta có: 22-4.2.1+1+2=-1<0
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
x2 – 2xy + y2 + 1
= (x2 – 2xy + y2) + 1
= (x – y)2 + 1.
(x – y)2 ≥ 0 với mọi x, y ∈ R
⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).
![](https://rs.olm.vn/images/avt/0.png?1311)
a: x>2
y>2
=>x+y>2+2=4
x>y>2
=>xy>2^2=4
b: x^2-xy=x(x-y)
x-y>0; x>0
=>x(x-y)>0
=>x^2-xy>0
y>2
=>y-2>0
=>y(y-2)>0
=>y^2-2y>0
x>y và y>2
=>y>0 và x-y>0
=>y(x-y)>0
=>xy-y^2>0
![](https://rs.olm.vn/images/avt/0.png?1311)
x² + y² + xy - 2x - 2y + 2
= (x² - 2x + 1) + (xy - y) + y²/4 + 3y²/4 - y + 1/3 + 2/3
= [ (x - 1)² + 2.(x - 1).y/2 + y²/4 ] + 3.[ (y/2)² - 2.y/2.1/3 + 1/9 ] + 2/3
= (x - 1 + y/2)² + 3(y/2 - 1/3)² + 2/3
có:
(x - 1 + y/2)² ≥ 0
3(y/2 - 1/3)² ≥ 0
--> (x - 1 + y/2)² + 3(y/2 - 1/3)² + 2/3 > 0
hay x² + y² + xy - 2x - 2y + 2 > 0 --> đ.p.c.m
\(x^2+y^2-x+2y+4\)
\(=x^2+y^2-x+2y+1+\frac{12}{4}\)
\(=x^2-x+\frac{1}{4}+y^2+2y+1+\frac{11}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+1\right)^2+\frac{11}{4}\)
Dễ thấy :\(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+1\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+1\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\)