Cho hình chóp S. ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm cảu AB, SC; E là trung điểm SA. Thiết diện hình chóp khi cắt bởi mặt phẳng ( EMN ).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Do B, I, K thẳng hàng, trong DABN kẻ MF//BI, FÎAN
=>F là trung điểm của AI. Suy ra BI/BK =4/3
Xét tam giác SAB ta có: MN là đường trung bình suy ra MN // AB.
Tương tự ta có: NP // BC, PQ // CD, MQ // AD.
Mà ABCD là hình bình hành nên AB // CD, AD// CD, suy ra MN // PQ, MQ // NP.
Như vậy, MNPQ là hình bình hành.
Đáp án B
Trong mặt phẳng (ABCD) gọi I là giao điểm của MD và BC
Trong mặt phẳng (SBC) gọi K là giao điểm của IN và SB
Khi đó ta có: (MND) ∩ (SAB) = KM
(MND) ∩ (ABCD) = MD
(MND) ∩ (SBC) = KN
(MND) ∩ (SCD) = ND
Vậy thiết diện của mặt phẳng (MND) với hình chóp là tứ giác NDMK.
Đáp án B
Gọi giao của AC và BD là O
\(\left\{{}\begin{matrix}O\in AC\subset\left(SAC\right)\\O\in BD\subset\left(SBD\right)\end{matrix}\right.\Leftrightarrow O\in\left(SAC\right)\cap\left(SBD\right)\)
\(\left\{{}\begin{matrix}S\in\left(SAC\right)\\S\in\left(SBD\right)\end{matrix}\right.\Leftrightarrow S\in\left(SAC\right)\cap\left(SBD\right)\)
=>(SAC) giao (SBD)=SO
Gọi P là giao điểm của mặt phẳng (EMN) với cạnh AB. Ta có ME là đường trung bình của tam giác SAB, nên ta có ME song song với đoạn thẳng AB và ME = 1/2 * AB. Tương tự, ta cũng có MN song song với cạnh SC và MN = 1/2 * SC. Vì EMN là tam giác đều, nên ta có EP = EN = NP = 1/3 * EMN.
Vì E là trung điểm của SA, nên ta có SE = 1/2 * SA. Vì SN là đường trung bình của tam giác SCA, nên ta có SN = 1/2 * SC.
Từ các thông tin trên, ta có thể xác định các điểm P, E, và N trên hình chóp S.ABCD. Sau đó, ta vẽ đường thẳng EN và vẽ đường thẳng qua P song song với đáy ABCD, giao điểm của hai đường thẳng này là điểm M.
Vậy, thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (EMN) là một hình bình hành có các đỉnh là các điểm E, M, N và các cạnh là các đoạn thẳng EM, MN, NE.