Chung Minh: 3sin^2a+5sin a. cos a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\left(sin^2a+cos^2a\right)^3-3sin^2a\cdot cos^2a\cdot\left(sin^2a+cos^2a\right)+3sin^2a\cdot cos^2a\)
=1
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(3sin^22x-2sin2x.cos2x-4cos^22x=2\)
\(\Leftrightarrow-\dfrac{3}{2}\left(1-2sin^22x\right)-2sin2x.cos2x-2\left(2cos^22x-1\right)=\dfrac{5}{2}\)
\(\Leftrightarrow sin4x+\dfrac{7}{2}cos4x=-\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{\sqrt{53}}{2}\left(\dfrac{2}{\sqrt{53}}sin4x+\dfrac{7}{\sqrt{53}}cos4x\right)=-\dfrac{5}{2}\)
\(\Leftrightarrow sin\left(4x+arccos\dfrac{2}{\sqrt{53}}\right)=-\dfrac{5}{\sqrt{53}}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+arccos\dfrac{2}{\sqrt{53}}=arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+k2\pi\\4x+arccos\dfrac{2}{\sqrt{53}}=\pi-arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}arccos\dfrac{2}{\sqrt{53}}+\dfrac{1}{4}arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{4}-\dfrac{1}{4}arccos\dfrac{2}{\sqrt{53}}-\dfrac{1}{4}arcsin\left(-\dfrac{5}{\sqrt{53}}\right)+\dfrac{k\pi}{2}\end{matrix}\right.\)
2.
\(2\sqrt{3}cos^2x+6sinx.cosx=3+\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}\left(2cos^2x-1\right)+6sinx.cosx=3\)
\(\Leftrightarrow\sqrt{3}cos2x+3sin2x=3\)
\(\Leftrightarrow2\sqrt{3}\left(\dfrac{1}{2}cos2x+\dfrac{\sqrt{3}}{2}sin2x\right)=3\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\pi\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)
\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)
\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=1-3sin^2a.cos^2a\)
\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)
\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)
\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)
\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)
\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)