K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

\(\left(3x+2\right)\left(2-3x\right)\)

\(=6x-9x^2+4-6x\)

\(=-9x^2+4\)

\(A=\left(2x-1\right)^2-\left(2x+3\right)^2\)

\(A=\left(2x-1-2x-3\right)\left(2x-1+2x+3\right)\)

\(A=-4\left(4x+2\right)\)

\(A=-8\left(2x+1\right)\)

2:

a: =>x^2+3x-4x-12-(x^2-5x+x-5)=8

=>x^2-x-12-x^2+4x+5=8

=>3x-7=8

=>3x=15

=>x=5

b: =>3x^2+3x-2x-2-3x^2-21x=13

=>-20x=15

=>x=-3/4

c: =>x^2-25-x^2-2x=9

=>-2x=25+9=34

=>x=-17

d: =>x^3-1-x^3+3x=1

=>3x-1=1

=>3x=2

=>x=2/3

15 tháng 11 2021

\(a,=\dfrac{x^4\left(x-2\right)+2x^2\left(x-2\right)-3\left(x-2\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x^4+2x^2-3\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x^4-x^2+3x^2-3\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x-1\right)\left(x^2+3\right)}{x+4}\)

\(b,=\dfrac{x^4-3x^2-x^2+3}{x^4-x^2+7x^2-7}=\dfrac{\left(x^2-3\right)\left(x^2-1\right)}{\left(x^2+7\right)\left(x^2-1\right)}=\dfrac{x^2-3}{x^2+7}\\ c,=\dfrac{\left(x^3-1\right)\left(x+1\right)}{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}\\ =\dfrac{\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)}{\left(x^2+1\right)\left(x^2+x+1\right)}=\dfrac{x^2-1}{x^2+1}\)

12 tháng 12 2023

a: (x+1)(3-x)(x-2)2

\(=\left(3x-x^2+3-x\right)\left(x^2-4x+4\right)\)

\(=\left(-x^2+2x+3\right)\left(x^2-4x+4\right)\)

\(=-x^4+4x^3-4x^2+2x^3-8x^2+8x+3x^2-12x+12\)

\(=-x^4+6x^3-9x^2-4x+12\)

b: \(9x\left(1-x\right)+\left(3x-2\right)\left(3x+2\right)\)

\(=9x-9x^2+\left(3x\right)^2-4\)

\(=9x-9x^2+9x^2-4=9x-4\)

1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)

=-27x^3-18x^2+4x+10

2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27

=7x^3+37x^2+46x+33

5:

\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)

\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)

=7x^3-48x^2+8x-35

20 tháng 12 2022

a: \(=\dfrac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)

b: \(=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)

c: \(=\dfrac{2x^2-3x-9-x^2+3x+x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{2x^2+6x}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x}{x-3}\)

5 tháng 10 2021

\(A=5x^2-3x-x^3+x^2+x^3-62x-10+3x\\ A=6x^2-62x-10\\ B=x^3+x^2+x-x^3-x^2-x+5=5\\ C=3x^2y-15xy^2+15xy^2-10y^3+10y^2-3x^2y-4=-4\)

b: Ta có: \(B=x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)

\(=x^3+x^2+x-x^3-x^2-x+5\)

=5

a) Ta có: \(\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)

\(=\left(3x-2+3x+2\right)^2\)

\(=36x^2\)(1)

Thay \(x=-\dfrac{1}{3}\) vào biểu thức (1), ta được:

\(36\cdot\left(-\dfrac{1}{3}\right)^2=36\cdot\dfrac{1}{9}=4\)

b) Sửa đề: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)

Ta có: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)

\(=\left(x+y-7-y+6\right)^2\)

\(=\left(x-1\right)^2=100^2=10000\)

23 tháng 12 2021

a: \(=x^2+2x-8-x^2-2x-1=-9\)

b: \(=\dfrac{x^2+6x+9+3x-9+2x^2-18x}{x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x^2-9x}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)

1: Ta có: \(x^2-2x+5-\left(x-7\right)\left(x+2\right)\)

\(=x^2-2x+5-x^2-2x+7x-14\)

\(=3x-9\)

2: Ta có: \(-5x\left(x-5\right)+\left(x-3\right)\left(x^2-7\right)\)

\(=-5x^2+25x+x^3-7x-3x^2+21\)

\(=x^3-8x^2+18x+21\)

3: Ta có: \(x\left(x^2-x-2\right)-\left(x+5\right)\left(x-1\right)\)

\(=x^3-x^2-2x-x^2-4x+5\)

\(=x^3-2x^2-6x+5\)