B= (2sqrt(x))/(x - 9) - 2 sqrt x +3 (x>0,x ne9).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{x-9}\right)\cdot\dfrac{2\sqrt{x}+6}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}-3+2\sqrt{x}}{x-9}\cdot\dfrac{2\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)
\(=\dfrac{3\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\cdot\dfrac{2}{\sqrt{x}-3}=\dfrac{6}{\sqrt{x}-3}\)
\(P=\dfrac{\sqrt{x}}{\sqrt{x}+3}:\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{x-9-3x-9}{2\left(x-9\right)}=\dfrac{-2x-18}{2\left(x-9\right)}=\dfrac{-x-9}{x-9}\)
a: Khi x=16 thì \(A=\dfrac{6}{16-3\cdot4}=\dfrac{6}{4}=\dfrac{3}{2}\)
b: P=A:B
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{6}\)
\(=\dfrac{\sqrt{x}+3}{\sqrt{x}}\)
c: \(P-1=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}}=\dfrac{3}{\sqrt{x}}>0\)
=>P>1
1.
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+9\sqrt{x}}{9-x}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-15\sqrt{x}}{x-9}\)
2.
\(B=\dfrac{3}{\sqrt{x}-3}+\dfrac{2}{\sqrt{x}+3}+\dfrac{x-5\sqrt{x}-3}{x-9}\)
\(=\dfrac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x-5\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3\sqrt{x}+9+2\sqrt{x}-6+x-5\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x}{x-9}\)
a: \(B=\dfrac{x+3+\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
b: Để B>1/3 thì B-1/3>0
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}-\dfrac{1}{3}>0\)
\(\Leftrightarrow3\sqrt{x}+3-\sqrt{x}-3>0\)
=>x>0
\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}}{x-9}+\dfrac{3x+3}{x-9}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(=\dfrac{\left(3x-3\sqrt{x}\right)\left(\sqrt{x}+1\right)+\left(3x+3\right)\left(\sqrt{x}+3\right)}{\left(x-9\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3x\sqrt{x}+3x-3x-3\sqrt{x}+3x\sqrt{x}+9x+3\sqrt{x}+9}{\left(x-9\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{6x\sqrt{x}+9x+9}{\left(x-9\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}+9+x-3\sqrt{x}}{\sqrt{x}\left(x-9\right)}\cdot\dfrac{x-9}{\sqrt{x}}=\dfrac{x+9}{x}\)
Sửa đề: \(B=\dfrac{2\sqrt{x}}{x-9}-\dfrac{2}{\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{2}{\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-3\right)}=\dfrac{6}{x-9}\)