Bài 3 : (1+1/1.3)(1+1/2.4)(1+1/3.5)...(1+1/99.101)
bài 4:
(x-3)(x+5)/(x-2)^2 <0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm câu 4 nha
Gọi d là ước chung của 2n+1 và 3n+2 (d thuộc N*)
=>(2n+1) : d và (3n+2) : d
=>3.(2n+1) :d và 2.(3n+2): d
=>(6n+3) :d và (6n+4) : d
=> ((6n+4) - (6n+3)) : d
=>1 :d => d=1
Vì d là ước chung của 2n+1/3n+2
mà d =1 => ƯC(2n+1/3n+2) =1
Vậy 2n+1/3n+2 là phân số tối giản
Tick mình nha bạn hiền .
câu 5 mình mới nghĩ ra nè ( có gì sai thì bạn sửa lại giúp mình nha)
Ta có : A=\(\dfrac{n+2}{n-5}\)
A=\(\dfrac{n-5+7}{n-5}\)
A=\(\left[\left(n-5\right)+7\right]\) : (n-5)
A= 7 : (n-5)
=> (n-5) thuộc Ư(7)=\(\left\{1;-1;-7;7\right\}\)
Suy ra :
n-5 =1=> n= 6
n-5= -1 =>n=4
n-5=7=>n=12
n-5= -7 =>n= -2
Vậy n = 6 ;4;12;-2
Mấy dấu chia ở câu 4 là dấu chia hết đó nha ( tại mình không biết viết dấu chia hết ).
Tick mình nha bạn hiền.
\(A=1+2+2^2+...+2^{2018}\)
\(2A=2+2^2+...+2^{2019}\)
\(2A-A=\left[2+2^2+...+2^{2019}\right]-\left[1+2+2^2+...+2^{2018}\right]\)
\(A=2^{2019}-1\)
#)Giải :
\(A=1+2+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+2^3+2^4+...+2^{2019}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)
\(A=2^{2019}-1\)
\(B=3+3^2+3^3+...+3^{2017}\)
\(3B=3^2+3^3+3^4+...+3^{2018}\)
\(3B-B=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)
\(2B=3^{2018}-3\)
\(B=\frac{3^{2018}-3}{2}\)
Bài 1:
Ta có:
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b, Đặt \(A=\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
\(\Rightarrow\frac{2}{5}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
Từ (a) \(\Rightarrow\frac{2}{5}A=\frac{100}{101}\)
\(\Rightarrow A=\frac{100}{101}:\frac{2}{5}=\frac{100}{101}.\text{5/2}=\frac{250}{101}\)
Bài 2:
Đặt \(\left(2n+1;3n+2\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)
\(\Rightarrow\left(2n+1;3n+2\right)=1\)
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản
1. Giải
a, \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=2.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
b, \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(=5.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{5.100}{2.101}=\frac{500}{202}=\frac{250}{101}\)
2. Giải
Gọi ước chung lớn nhất của 2n + 1 và 3n + 2 là d (d thuộc N*)
=> 2n + 1 \(⋮\)d ; 3n + 2 \(⋮\)d
=> 3(2n + 1) \(⋮\)d ; 2(3n + 2) \(⋮\)d
=> 6n + 3 \(⋮\)d , 6n + 4 \(⋮\)d
=> (6n + 4) - (6n + 3) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản
1. a, M = -\(\dfrac{1}{3}.\dfrac{141}{17}-\dfrac{39}{3}.\left(-\dfrac{1}{17}\right)\)
= -\(\dfrac{1}{17}.\dfrac{141}{3}-\dfrac{39}{3}.\left(-\dfrac{1}{17}\right)\)
= -\(\dfrac{1}{17}\left(\dfrac{141}{3}-\dfrac{39}{3}\right)\)
= -\(\dfrac{1}{17}.34\)
= -2
@Lê Thị Hồng Ngát
1. b, \(\dfrac{3}{4}+\dfrac{1}{4}x=7\)
<=> \(\dfrac{1}{4}x=\dfrac{25}{4}\)
<=> x = 25
@Lê Thị Hồng Ngát
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
a) 5x - x = 64 \(\Rightarrow\) 4x = 64 \(\Rightarrow\) x = 16
b) \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
c) \(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
d) \(C=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{97\cdot99}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{97\cdot99}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{2}\cdot\frac{98}{99}\)
\(=\frac{49}{99}\)
\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{99.101}\right)\)
\(=\frac{2.2}{1.3}\frac{3.3}{2.4}.....\frac{100.100}{99.101}\)
\(=\frac{\left(2.3.4.....100\right).\left(2.3.4.....100\right)}{\left(1.2.3.....99\right).\left(3.4.5.....101\right)}\)
\(=\frac{100.2}{101}=\frac{200}{101}\)
\(\frac{\left(x-3\right)\left(x+5\right)}{\left(x-2\right)^2}< 0\)
\(\Rightarrow\frac{\left(x-3\right)\left(x+5\right)}{\left(x-2\right).\left(x-2\right)}< 0\)
=> ( x - 3 ) . ( x - 5 ) và ( x - 2 ) . ( x - 2 ) trái dấu
Mà ( x - 2 )2 = ( x - 2 ) . ( x - 2 ) ≥ 0 ∀ x
\(\Rightarrow\hept{\begin{cases}\left(x−3\right).\left(x+5\right)< 0\\\left(x−2\right).\left(x−2\right)>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< −5;−5< x< 3\\x>2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< −5\\2< x< 3\end{cases}}\)