K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2023

Trong tam giác ABC có:

\(cosC=-cos\left(A+B\right)-\dfrac{1}{3}\)

\(\Rightarrow sinC=\sqrt{1-\left(-\dfrac{1}{3}\right)^2}=\dfrac{2\sqrt{2}}{3}\)

Lại có: \(2R=\dfrac{AB}{sinC}\Leftrightarrow R=\dfrac{AB}{2.sinC}=\dfrac{3\sqrt{2}c}{8}\)

$HaNa$

22 tháng 8 2023

cho mình hỏi tại sao cosC lại bằng thế kia vậy ạ

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
16 tháng 11 2017

đề bài sai ak

24 tháng 5 2016

A B C I

trong tgiac vuông tâm đường tròn ngoại tiếp chính là trung điểm cạnh huyền

Áp dụng định lý pytago vào tgiac vuông ABC ta có :

\(BC^2\)=\(AC^2\)+\(AB^2\)

\(BC^2\)=\(8^2\)+\(6^2\)

\(BC^2\)=100

BC=10 

Vậy bán kính đường tròn ngoại tiếp tgiac ABC là:

10:2=5cm

31 tháng 7 2016

bán kính đường tròn nội tiếp = 1 ok ;)

 

24 tháng 5 2016

Gọi bk ngoại tiếp là R còn nôi tiếp là r ;p là 1/2 chu vi (= a+b+c/2)

ra có R=BC/2=5

mà S=pr=(6+8+10)/2r=6*8/2=>r=2

DD
23 tháng 5 2021

\(h=\sqrt{b^2-\frac{a^2}{4}}\Rightarrow S=\frac{1}{2}ah=\frac{1}{2}a\sqrt{b^2-\frac{a^2}{4}}\)

\(R=\frac{abb}{4S}=\frac{ab^2}{\sqrt{4b^2-a^2}.a}=\frac{b^2}{\sqrt{4b^2-a^2}}\)

\(r=\frac{S}{p}=\frac{a\sqrt{b^2-\frac{a^2}{4}}}{a+2b}\)

12 tháng 3 2017

Chọn B.

Áp dụng định lí Cosin, ta có

BC2 = AB2 + AC2 - 2AB.AC.cosA

= 32 + 62-2.3.6.cos600 = 27

Ta thấy:  BC2 + AB2 = AC2

Suy ra tam giác ABC vuông tại B

do đó bán kính R = AC : 2 = 3.

16 tháng 11 2019

Áp dụng định lí Cosin, ta có  B C 2 = A B 2 + A C 2 − 2 A B . A C . cos B A C ^

= 3 2 + 6 2 − 2.3.6. c o s 60 0 = 27 ⇔ B C 2 = 27 ⇔ B C 2 + A B 2 = A C 2 .

Suy ra tam giác ABC vuông tại B,  do đó bán kính R = A C 2 = 3.  

Chọn A.

14 tháng 12 2022
A