tam giác ABC có các góc A=75, B=45. tính tỉ số AB/AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn xem lại đề không hiểu các dâu hình chữ nhật sau ACB là gì?
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC có
\(BC^2=AB^2+AC^2\)
hay ΔBCA vuông tại A
![](https://rs.olm.vn/images/avt/0.png?1311)
\(BC^2=AB^2+AC^2=36+64=100=10^2\)
\(\Rightarrow BC=10\left(cm\right)\)
\(SinB=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\Rightarrow SinC=Sin\left(90-B\right)=CosB=\dfrac{3}{5}\)
\(CosB=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\Rightarrow CosC=Cos\left(90-B\right)=SinB=\dfrac{4}{5}\)
\(tanB=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow tanC=tan\left(90-B\right)=CotB=\dfrac{3}{4}\)
\(CotB=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow cotC=cot\left(90-B\right)=tanB=\dfrac{4}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đổi AB=60mm=6cm
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có
\(\left\{{}\begin{matrix}\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\\\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\\\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\\\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\\\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\\\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\\\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\end{matrix}\right.\)
Áp dụng đl tổng 3 góc trong tam giác:
\(\Rightarrow\widehat{C}=180^o-75^o-45^o=60^o\)
Ta có:
\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}\\ \Rightarrow\dfrac{AB}{AC}=\dfrac{sinC}{sinB}=\dfrac{\sqrt{6}}{2}\)
$HaNa$
Mà: \(\widehat{C}=180^o-75^o-45^o=60^o\)
Ta có:
\(\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{sinC}{sinB}\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{sin60^o}{sin45^o}\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{\sqrt{2}}{2}}\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{\sqrt{3}}{\sqrt{2}}\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{\sqrt{6}}{2}\)