K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=2\sqrt{80\sqrt{3}}+3\sqrt{20\sqrt{3}}-2\sqrt{5\sqrt{3}}-4\sqrt{45\sqrt{3}}\)

\(=8\sqrt{5\sqrt{3}}+6\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-12\sqrt{5\sqrt{3}}\)

=0

a) \(E=2\sqrt{40\sqrt{12}}+3\sqrt{5\sqrt{48}}-2\sqrt{\sqrt{75}}-4\sqrt{15\sqrt{27}}.\)

  \(=8\sqrt{5\sqrt{3}}+6\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}-12\sqrt{5\sqrt{3}}}\)

  \(=0\)

b) \(F=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}.\)

Vì \(=\frac{5}{12}-\frac{1}{\sqrt{6}}=\frac{5-2\sqrt{6}}{12}=\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}\)

\(\frac{1}{\sqrt{3}}+\frac{1}{2\sqrt{3}}=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}=\frac{2\sqrt{3}+\sqrt{2}}{6}\)

Nên \(F=\frac{2\sqrt{3}+\sqrt{2}}{6}+\frac{1}{\sqrt{3}}\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}}=\frac{2\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\frac{3\sqrt{3}}{6}=\frac{\sqrt{3}}{2}\)

a: \(A=6\sqrt{3}+10\sqrt{3}-12\sqrt{3}=4\sqrt{3}\)

b: \(B=7\sqrt{3}+5\sqrt{3}-12\sqrt{3}=0\)

c: \(=12\sqrt{2}-6+3\left(9-4\sqrt{2}\right)=12\sqrt{2}-6+27-12\sqrt{2}=21\)

d: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)

1) Ta có: \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)

\(=1+\sqrt{2}\)

2) Ta có: \(2\sqrt{27}-6\sqrt{\frac{4}{3}}+\frac{3}{5}\sqrt{75}\)

\(=\sqrt{108}-\sqrt{36\cdot\frac{4}{3}}+\sqrt{75\cdot\frac{9}{25}}\)

\(=\sqrt{108}-\sqrt{48}+\sqrt{27}\)

\(=\sqrt{3}\left(6-4+3\right)\)

\(=5\sqrt{3}\)

3) Sửa đề: \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{192}\)

Ta có: \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{192}\)

\(=\sqrt{2}\cdot\sqrt{4}\cdot\sqrt{3}-10\sqrt{4}\cdot\sqrt{3}+16\cdot\sqrt{4}\cdot\sqrt{3}\)

\(=\sqrt{2}\cdot\sqrt{12}-10\sqrt{12}+16\sqrt{12}\)

\(=\sqrt{12}\left(\sqrt{2}-10+16\right)\)

\(=2\sqrt{3}\left(\sqrt{2}-6\right)\)

\(=2\sqrt{6}-12\sqrt{3}\)

4) Ta có: \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)

\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{\sqrt{12}}{6}-\frac{2\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)

\(=\frac{6\left(2-\sqrt{3}\right)+2\sqrt{3}-6+2\sqrt{3}}{6}\)

\(=\frac{12-6\sqrt{3}+2\sqrt{3}-6+2\sqrt{3}}{6}\)

\(=\frac{6-2\sqrt{3}}{6}\)

\(=\frac{2\sqrt{3}\left(\sqrt{3}-1\right)}{2\sqrt{3}\cdot\sqrt{3}}\)

\(=\frac{\sqrt{3}-1}{\sqrt{3}}\)

5) Ta có: \(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)

\(=\frac{\sqrt{3}\left(2+5+3\right)}{\sqrt{15}}=\frac{10}{\sqrt{5}}=2\sqrt{5}\)

6) Ta có: \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)

\(=\sqrt{48\cdot\frac{1}{4}}-\sqrt{75\cdot4}-\sqrt{3}+5\sqrt{\frac{4}{3}}\)

\(=\sqrt{12}-\sqrt{300}-\sqrt{3}+\sqrt{25\cdot\frac{4}{3}}\)

\(=\sqrt{12}-\sqrt{300}-\sqrt{3}+\sqrt{\frac{100}{3}}\)

\(=\sqrt{3}\left(2-10-1+\frac{10}{3}\right)\)

\(=-\frac{17\sqrt{3}}{3}=-\frac{17}{\sqrt{3}}\)

25 tháng 6 2023

17 tháng 12 2023

a: \(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)

\(=2\sqrt{4\cdot2\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\cdot2\sqrt{3}}\)

\(=4\sqrt{2\sqrt{3}}-\sqrt{2\sqrt{3}}-3\sqrt{2\sqrt{3}}\)

=0

b: \(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\sqrt{3}+\left|2-\sqrt{3}\right|\)

\(=\sqrt{3}+2-\sqrt{3}\)

=2

c: \(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)

\(=\left|\sqrt{7}-4\right|-2\sqrt{7}+3\sqrt{7}\)

\(=4-\sqrt{7}+\sqrt{7}\)

=4

d: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)

\(=\dfrac{\sqrt{10}\left(15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\right)}{\sqrt{10}}\)

\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)

\(=15\sqrt{5}+5\cdot2\sqrt{5}-3\cdot3\sqrt{5}\)

\(=16\sqrt{5}\)

e: \(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)

\(=\sqrt{3}-2\cdot4\sqrt{3}+3\cdot5\sqrt{3}-4\cdot6\sqrt{3}\)

\(=\sqrt{3}-8\sqrt{3}+15\sqrt{3}-24\sqrt{3}\)

\(=-16\sqrt{3}\)

a: =2015+6-5=2016

b: =10căn 2+5căn 2-6căn 2=9căn 2

c: =3căn 3-4căn 3-5căn 3=-6căn 3

d: =2căn 3+3căn 3-4căn 3=căn 3

21 tháng 6 2023

\(A=2015+6-5==2015+1=2016\)

\(B=5\sqrt{2^3}+\sqrt{5^2.2}-2\sqrt{3^2.2}\\ =10\sqrt{2}+5\sqrt{2}-6\sqrt{2}\\ =\left(10+5-6\right)\sqrt{2}=9\sqrt{2}\)

\(C=\sqrt{3^3}-2\sqrt{2^2.3}-\sqrt{5^2.3}\\ =3\sqrt{3}-4\sqrt{3}-5\sqrt{3}\\ =\left(3-4-5\right)\sqrt{3}=-6\sqrt{3}\)

\(D=\sqrt{2^2.3}+\sqrt{3^3}-\sqrt{4^2.3}\\ =2\sqrt{3}+3\sqrt{3}-4\sqrt{3}\\ =\left(2+3-4\right)\sqrt{3}=\sqrt{3}\)

a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)

b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)

c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)