K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B=y^2-y+1

=y^2-2*y*1/2+1/4+3/4

=(y-1/2)^2+3/4>=3/4

Dấu = xảy ra khi y=1/2

E=-x^2+x+2

=-(x^2-x-2)

=-(x^2-x+1/4-9/4)

=-(x-1/2)^2+9/4<=9/4

Dấu = xảy ra khi x=1/2

31 tháng 5 2016

1) \(C=-\left(x^2-6x+9\right)+5\)

\(\Leftrightarrow C=-\left(x-3\right)^2+5.\)

Vậy GTLN của C là 5 <=> x=3

3) \(E=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+5\)

\(E=-\left(x+2\right)^2-\left(y-1\right)^2+5\)

Vậy GTNN của E bằng 5 <=> x=-2 và y=1

31 tháng 5 2016

Dương: Câu c là GTLN em nhé :)

b. Ta chia ra thành các trường hợp:

- Với \(x\ge3,D=\left(x-3\right)\left(2-x+3\right)=\left(x-3\right)\left(5-x\right)=-x^2+8x-15=1-\left(x-4\right)^2\le1\)

- Với \(x< 3,D=\left(3-x\right)\left(2-3+x\right)=\left(3-x\right)\left(x-1\right)=-x^2+4x-3=1-\left(x-2\right)^2\le1\)

Vậy GTLN của D = 1 khi x = 4 hoặc x = 2.

Chúc em học tốt :))

22 tháng 10 2019

toi ko bt

\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=-6

\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)

Dấu '=' xảy ra khi x=2/3

\(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

15 tháng 12 2022

a: =-x^2+6x-4

=-(x^2-6x+4)

=-(x^2-6x+9-5)

=-(x-3)^2+5<=5

Dấu = xảy ra khi x=3

b: =3(x^2-5/3x+7/3)

=3(x^2-2*x*5/6+25/36+59/36)

=3(x-5/6)^2+59/12>=59/12

Dấu = xảy ra khi x=5/6

c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)

\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)

\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)

Dấu = xảy ra khi x=4 hoặc x=2

13 tháng 9 2016

(x-1/2)2 + (y + 3)2 -1/4 +10 -9

GTNN = 3/4

(giải theo pp học vnen)

21 tháng 6 2016

\(A=\frac{y^2}{\left(3x\right)^2-2\times3x\times2y+\left(2y\right)^2+y^2}=\frac{y^2}{\left(3x-2y\right)^2+y^2}\)

Tử >= 0 và mẫu >= 0 với điều kiện x = y = 0

nên GTNN không xảy ra khi phân tích như thế này