K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2023

 Gọi \(P=2+2^2+2^3+...+2^{120}\)

\(\Rightarrow2P=2^2+2^3+2^4+...+2^{121}\)

\(\Rightarrow P=2P-P=2^{121}-2\)

 Ta đi chứng minh \(2^{121}-2⋮17\) hay \(2^{120}-1⋮17\)

 Thật vậy, dễ dàng kiểm tra \(2^8-1⋮17\). Lại có \(2^{120}-1=\left(2^8\right)^{15}-1\) \(⋮2^8-1⋮17\) nên suy ra \(2^{120}-1⋮17\).

 (Áp dụng tính chất \(a^n-1⋮a-1\) với mọi số nguyên \(a\) khác 1 và số tự nhiên \(n\))

 Từ đó suy ra đpcm.

19 tháng 8 2023

Bạn xem lại đề

19 tháng 8 2023

Đặt : 

=

2

1

3

+

2

3

5

+

2

5

7

+

.

.

.

+

2

99

101

A= 

1⋅3

2

 

 + 

3⋅5

2

 

 + 

5⋅7

2

 

 +...+ 

99⋅101

2

 

 

 

2

1

3

=

2

3

5

+

2

5

7

+

.

.

.

+

2

99

101

A− 

1⋅3

2

 

 = 

3⋅5

2

 

 + 

5⋅7

2

 

 +...+ 

99⋅101

2

 

 

 

2

2

1

3

=

2

3

2

5

+

2

5

2

7

+

2

7

.

.

.

+

2

99

2

101

2A− 

1⋅3

2

 

 = 

3

2

 

 − 

5

2

 

 + 

5

2

 

 − 

7

2

 

 + 

7

2

 

 −...+ 

99

2

 

 − 

101

2

 

 

 

2

2

3

=

2

3

2

101

2A− 

3

2

 

 =

Đặt : 

=

2

1

3

+

2

3

5

+

2

5

7

+

.

.

.

+

2

99

101

A= 

1⋅3

2

 

 + 

3⋅5

2

 

 + 

5⋅7

2

 

 +...+ 

99⋅101

2

 

 

 

2

1

3

=

2

3

5

+

2

5

7

+

.

.

.

+

2

99

101

A− 

1⋅3

2

 

 = 

3⋅5

2

 

 + 

5⋅7

2

 

 +...+ 

99⋅101

2

 

 

 

2

2

1

3

=

2

3

2

5

+

2

5

2

7

+

2

7

.

.

.

+

2

99

2

101

2A− 

1⋅3

2

 

 = 

3

2

 

 − 

5

2

 

 + 

5

2

 

 − 

7

2

 

 + 

7

2

 

 −...+ 

99

2

 

 − 

101

2

 

 

 

2

2

3

=

2

3

2

101

2A− 

3

2

 

 =

 

3

2

 

 − 

101

2

 

 

 

2

2

3

=

196

303

2A− 

3

2

 

 = 

303

196

 

 

 

2

3

=

98

303

A− 

3

2

 

 = 

303

98

 

 

 

=

98

303

+

2

3

=

100

101

A= 

303

98

 

 + 

3

2

 

 = 

101

100

 

3

2

 

 − 

101

2

 

 

 

2

2

3

=

196

303

2A− 

3

2

 

 = 

303

196

 

 

 

2

3

=

98

303

A− 

3

2

 

 = 

303

98

 

 

 

=

98

303

+

2

3

=

100

101

A= 

303

98

 

 + 

3

2

 

 = 

101

100

 

a: A=(1+4+4^2)+4^3(1+4+4^2)+...+4^21(1+4+4^2)

=21(1+4^3+...+4^21) chia hết cho 3

b: A=21(1+4^3+...+4^21)

mà 21 chia hết cho 7

nên A chia hết cho 7

c: A=(1+4+4^2+4^3)+4^4(1+4+4^2+4^3)+...+4^20(1+4+4^2+4^3)

=85(1+4^4+...+4^20) chia hết cho 17

25 tháng 10 2021

a: \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=4n\left(2n+2\right)⋮8\)