CMR neu (n,6)=1 thi n^2-1 chia het cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét:
x^3-x+y^3-y+z^3-z
=x(x^2-1)+y(y^2-1)+z(z^2-1)
=x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)
dễ thấy tổng trên chia hết cho 6
mà x+y+z chia hết cho 6 nên: x^3+y^3+z^3 chia hết cho 6 (đpcm)
Do 6=2.3
Nên a2-1 chia hết cho 2 và 3
Mà a là 1 số lẻ
=>a2 là số lẻ
=>a2-1 chia hết cho 2
=> a2-1 chia hết cho 3
Vậy a2-1 chia hết cho 6 (đpcm)
do n > 3 => 2^n >= 2^4 chia hết cho 16 => 10a + b chia hết cho 16
Ta có 2^n có thể có những tân cùng là 2; 4; 6; 8
TH1 2^n có tận cùng là 2 => n = 4k+1
=> 10a + b có tận cùng là 2 => b = 2 ( do b < 10)
ta có 2^n = 10a + 2 => 2( 2^(4k) - 1) = 10a => 2^( 4k) - 1 = 5a
do 2^(4k) - 1 chia hết cho 3 => 5a chia hết cho 3 => a chia hết cho 3
=> a.b = a.2 chia hết cho 6 (1)
TH2 2^n có tận cùng là 4 => n = 4k +2
=> 2^n = 10a + b có tận cùng là 4 => b = 4( do b <10)
=> 2^(4k +2) = 10a + 4 => 4.2^(4k) - 4 = 10a
=> 4(2^4k - 1) = 10 a
ta có 2 ^4k -1chia hết cho 3 => 10a chia hết cho 3 => a chia hết cho 3
=> a.b chia hết cho 6 (2)
Th3 2^n có tận cùng là 8 => n = 4k +3
TH 3 2^n có tận cùng là 6 => n = 4k
bằng cách làm tương tự ta luôn có a.b chia hết cho 6
6x + 11y ⋮ 31
<=> 6x + 42y - 31y ⋮ 31
<=> 6(x + 7y) - 31y ⋮ 31
Vì 31y ⋮ 31 . Để 6(x + 7y) - 31y ⋮ 31 <=> 6(x + 7y) ⋮ 31
Mà ( 6;31 ) = 1 => x + 7y ⋮ 31 ( đpcm )
+ Do a lẻ => a2 lẻ => a2 - 1 chẵn => a2 - 1 chia hết cho 2 (1)
+ Do a không chia hết cho 3 => a = 3k + 1 hoặc a = 3k + 2 (k thuộc N)
Nếu a = 3k + 1 thì a2 = (3k + 1).(3k + 1)
= (3k + 1).3k + (3k + 1)
= 9k2 + 3k + 3k + 1 chia 3 dư 1
Nếu a = 3k + 2 thì a2 = (3k + 2).(3k + 2)
= (3k + 2).3k + 2.(3k + 2)
= 9k2 + 6k + 6k + 4 chia 3 dư 2
=> a2 chia 3 dư 1 => a2 - 1 chia hết cho 3 (2)
Từ (1) và (2), do (2;3)=1 => a2 - 1 chia hết cho 6
+ Do a lẻ => a2 lẻ => a2 - 1 chẵn => a2 - 1 chia hết cho 2 (1)
+ Do a không chia hết cho 3 => a = 3k + 1 hoặc a = 3k + 2 (k thuộc N)
Nếu a = 3k + 1 thì a2 = (3k + 1).(3k + 1)
= (3k + 1).3k + (3k + 1)
= 9k2 + 3k + 3k + 1 chia 3 dư 1
Nếu a = 3k + 2 thì a2 = (3k + 2).(3k + 2)
= (3k + 2).3k + 2.(3k + 2)
= 9k2 + 6k + 6k + 4 chia 3 dư 2
=> a2 chia 3 dư 1 => a2 - 1 chia hết cho 3 (2)
Từ (1) và (2), do (2;3)=1 => a2 - 1 chia hết cho 6