Tính \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a,\dfrac{2}{\sqrt{3}-\sqrt{5}}+\dfrac{3-2\sqrt{3}}{\sqrt{3}-2}\)
\(=\dfrac{5-3}{\sqrt{3}-\sqrt{5}}+\dfrac{\sqrt{3}\left(\sqrt{3}-2\right)}{\sqrt{3}-2}\)
\(=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}+\sqrt{3}\)
\(=\sqrt{5}+\sqrt{3}+\sqrt{3}\)
\(=\sqrt{5}+2\sqrt{3}\)
\(b,\dfrac{5-\sqrt{5}}{\sqrt{5}-1}+\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+3}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)
\(=\sqrt{5}+\dfrac{5-2\sqrt{15}+3}{5-3}\)
\(=\dfrac{2\sqrt{5}+8-2\sqrt{15}}{2}\)
\(=\dfrac{2\cdot\left(\sqrt{5}+4-\sqrt{15}\right)}{2}\)
\(=\sqrt{5}-\sqrt{15}+4\)
#\(Toru\)

a) Ta có: \(A=\sqrt{\sqrt{3}+\sqrt{2}}\cdot\sqrt{\sqrt{3}-\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\sqrt{3-2}=1\)
b) Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{3}\)
`A=sqrt{sqrt3+sqrt2}.sqrt{sqrt3-sqrt2}`
`=sqrt{(sqrt3+sqrt2)(sqrt3-sqrt2)}`
`=sqrt{3-2}=1`
`b)B=sqrt{5-2sqrt6}+sqrt{5+2sqrt6}`
`=sqrt{3-2sqrt6+2}+sqrt{3+2sqrt6+2}`
`=sqrt{(sqrt3-sqrt2)^2}+sqrt{(sqrt3+sqrt2)^2}`
`=sqrt3-sqrt2+sqrt3+sqrt2=2sqrt3`
`c)C=3-sqrt{3-sqrt5}`
`=3-sqrt{(6-2sqrt5)/2}`
`=3-sqrt{(sqrt5-1)^2/2}`
`=3-(sqrt5-1)/sqrt2`
`=3-(sqrt{10}-sqrt2)/2`
`=(6-sqrt{10}+sqrt2)/2`

\(a,=\dfrac{3-\sqrt{2}+3+\sqrt{2}}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}=\dfrac{6}{-1}=-6\\ b,=\dfrac{6\sqrt{2}+8-6\sqrt{2}+8}{\left(3\sqrt{2}-4\right)\left(3\sqrt{2}+4\right)}=\dfrac{16}{2}=8\\ c,=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2+\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\\ =\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}=\dfrac{16}{2}=8\)
\(d,=\dfrac{6\sqrt{2}+9\sqrt{3}-6\sqrt{2}+9\sqrt{3}}{\left(2\sqrt{2}-3\sqrt{3}\right)\left(2\sqrt{2}+3\sqrt{3}\right)}=\dfrac{18\sqrt{3}}{-19}=\dfrac{-18\sqrt{3}}{19}\\ e,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\\ =\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\\ =\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\\ =\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

4: Ta có: \(\dfrac{1}{3+\sqrt{5}}-\dfrac{1}{3-\sqrt{5}}\)
\(=\dfrac{3-\sqrt{5}-3-\sqrt{5}}{4}\)
\(=\dfrac{-\sqrt{5}}{2}\)

Bài 1:
\(D=\dfrac{1}{2}\sqrt{48}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}=\dfrac{1}{2}.4\sqrt{3}-\sqrt{3}+5.\dfrac{2\sqrt{3}}{3}=2\sqrt{3}-\sqrt{3}+\dfrac{10\sqrt{3}}{3}=\dfrac{3\sqrt{3}+10\sqrt{3}}{3}=\dfrac{13\sqrt{3}}{3}\)
\(E=\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{9-5}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{9-5}}=\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}=-\sqrt{5}\)
\(F=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}=\sqrt{\left(\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}\right)^2}+\sqrt{\left(\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{5}{2}}\right)^2}-\sqrt{2}=\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}+\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{5}{2}}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}\)
Bài 2:
Ta có: G-1
\(=\dfrac{\sqrt{x}-x+\sqrt{x}-1}{x-\sqrt{x}+1}\)
\(=\dfrac{-\left(x-2\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)
\(=\dfrac{-\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\le0\forall x\) thỏa mãn ĐKXĐ
hay \(G\le1\)

\(1,B=9-5=4\\ 2,\dfrac{\sqrt{5}+1}{3-2\sqrt{2}}-\dfrac{\sqrt{10}}{\sqrt{5}-2}+3\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(\sqrt{5}+1\right)\left(3+2\sqrt{2}\right)-\sqrt{10}\left(\sqrt{5}+2\right)+3\sqrt{2}-3\sqrt{5}\\ =3\sqrt{5}+2\sqrt{10}+3+2\sqrt{2}-5\sqrt{2}-2\sqrt{10}+3\sqrt{2}-3\sqrt{5}=3\)
\(3,\\ a,\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\dfrac{x+y+2xy}{1-xy}\right)\left(x,y\ge0;xy\ne1\right)\\ =\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{1-xy}:\dfrac{1-xy+x+y+2xy}{1-xy}\\ =\dfrac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}+\sqrt{y}-y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{1+x+y+xy}\\ =\dfrac{2\left(\sqrt{x}+\sqrt{y}\right)}{\left(1+x\right)+y\left(1+x\right)}=\dfrac{2\left(\sqrt{x}+\sqrt{y}\right)}{\left(1+y\right)\left(1+x\right)}\)
\(b,x=\dfrac{2}{2+\sqrt{3}}=\dfrac{2\left(2-\sqrt{3}\right)}{1}=4-2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{3}-1\)
Thay vào BT
\(=\dfrac{2\left(\sqrt{3}-1+\sqrt{y}\right)}{\left(1+y\right)\left(1+4-2\sqrt{3}\right)}=\dfrac{2\sqrt{3}-2+2\sqrt{y}}{\left(1+y\right)\left(3-2\sqrt{3}\right)}\\ =\dfrac{2\sqrt{3}-2+2\sqrt{y}}{3-2\sqrt{3}+3y-2y\sqrt{3}}\)

Đặt \(x=\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}>0\)
\(x^2=6+2\sqrt{\left(3+\sqrt{5+2\sqrt{3}}\right)\left(3-\sqrt{5+2\sqrt{3}}\right)}\)
\(\Rightarrow x^2=6+2\sqrt{4-2\sqrt{3}}\)
\(\Rightarrow x^2=6+2\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(\Rightarrow x^2=6+2\left(\sqrt{3}-1\right)=4+2\sqrt{3}\)
\(\Rightarrow x^2=\left(\sqrt{3}+1\right)^2\)
\(\Rightarrow x=\sqrt{3}+1\)
\(A=\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
\(A^2=3+\sqrt{5+2\sqrt{3}}+3-\sqrt{5+2\sqrt{3}}+2\sqrt{9-\left(5+2\sqrt{3}\right)}\)
\(=6+2\sqrt{4-2\sqrt{3}}\)
\(=6+2\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=6+2\sqrt{3}-2\)
\(=\left(\sqrt{3}+1\right)^2\)
\(\Rightarrow A=\sqrt{3}+1\)
\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-2\)
\(=\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}-\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{2}}-2\)
\(=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{5}-1\right)}^2}{\sqrt{2}}-2\)
\(=\frac{\sqrt{5}+1}{\sqrt{2}}-\frac{\sqrt{5}-1}{\sqrt{2}}-2\)
\(=\frac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}-2\)
\(=\frac{2}{\sqrt{2}}-2\)
\(=\frac{2-2\sqrt{2}}{\sqrt{2}}\)
\(=\frac{\sqrt{2}.\left(\sqrt{2}-2\right)}{\sqrt{2}}\)
\(=\sqrt{2}-2\)
.... Đúng thì ủng hộ nha ....
Đặt A= \(\sqrt{3+\sqrt{5}}\)- \(\sqrt{3-\sqrt{5}}\)- 2
<=>(A+2)^2 = 3+\(\sqrt{5}\)+ 3 - \(\sqrt{5}\)- 2. \(\sqrt{9-5}\)(A+2>0 do \(\sqrt{3+\sqrt{5}}\)> \(\sqrt{3-\sqrt{5}}\))
= 6 - 4 = 2
<=> A+2 = \(\sqrt{2}\) ( vì A+ 2>0)
<=> A= \(\sqrt{2}\)- 2