K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

\(abc\le\frac{\left(a+b+c\right)^3}{27}\Leftrightarrow27abc\le\left(a+b+c\right)^3\)

Lại theo BĐT AM-GM ta có:

\(a+b+c\ge3\sqrt[3]{abc}\) nên 

\(\left(a+b+c\right)^3\ge\left(3\sqrt[3]{abc}\right)^3=27abc\)

Xảy ra khi a=b=c

Thế thôi :v

5 tháng 7 2020

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)

\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)

Cộng vế với vế ta được :

\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)

Vậy ta có điều phải chứng mình 

5 tháng 7 2020

Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *

Khi đó:

\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)

Tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)

\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

NV
17 tháng 8 2020

\(3=ab+bc+ca\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)

\(\Rightarrow VT\le\frac{1}{abc+a^2\left(b+c\right)}+\frac{1}{abc+b^2\left(c+a\right)}+\frac{1}{abc+c^2\left(a+b\right)}\)

\(\Rightarrow VT\le\frac{1}{a\left(ab+bc+ca\right)}+\frac{1}{b\left(ab+bc+ca\right)}+\frac{1}{c\left(ab+bc+ca\right)}\)

\(\Rightarrow VT\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

27 tháng 9 2020

Bài 2: Ta có 2 đẳng thức ngược chiều: \(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}\ge8;\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\le8\)

Áp dụng BĐT AM-GM ta có:

\(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\)\(\ge2\sqrt{\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}.\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}}\)

Suy ra BĐT đã cho là đúng nếu ta chứng minh được

\(27\left(a^2+b^2+c^2\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(ab+bc+ca\right)\left(a+b+c\right)^3\left(1\right)\)

Sử dụng đẳng thức \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)và theo AM-GM: \(abc\le\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)ta được \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(2\right)\)

Từ (1)và(2) suy ra ta chỉ cần chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)đúng=> đpcm

Đẳng thức xảy ra khi và chỉ khi a=b=c

27 tháng 9 2020

Bài 3:

Ta có 2 BĐT ngược chiều: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2};\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\sqrt[3]{\frac{1}{8}}=\frac{1}{2}\)

Bổ đề: \(x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\left(1\right)\forall x,y,z\ge0\)

Chứng minh: Không mất tính tổng quát, giả sử \(x\ge y\ge z\). Khi đó:

\(VT\left(1\right)-VP\left(1\right)=x\left(x-y\right)^2+z\left(y-z\right)^2+\left(x-y+z\right)\left(x-y\right)\left(y-z\right)\ge0\)

Áp dụng BĐT AM-GM ta có:

\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64\left(abc\right)^2\)\(\Leftrightarrow\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\left[\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right]^3\)

Suy ra ta chỉ cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)

\(\Leftrightarrow a\left(a+b\right)\left(a+c\right)+b\left(b+c\right)\left(b+a\right)+c\left(c+a\right)\left(c+b\right)+4abc\)\(\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)đúng theo bổ đề

Đẳng thức xảy ra khi và chỉ khi a=b=c hoặc a=b,c=0 và các hoán vị

NV
2 tháng 3 2020

Sử dụng BĐT: \(xyz\le\left(\frac{x+y+z}{3}\right)^3\)

\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\left(\frac{a+b+c}{3}\right)^3\left(\frac{a+b+b+c+c+a}{3}\right)^3=\left(\frac{1}{3}\right)^3\left(\frac{2}{3}\right)^3=\frac{8}{729}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

29 tháng 7 2016

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

23 tháng 3 2017

mình chịu bó tay

24 tháng 3 2017

sao lại thế -.-

13 tháng 3 2016

Ta có:

\((p-a)(p-b) \leq \frac{(p-a+p-b)^2}{4}=\frac{c^2}{4}\) tương tự rồi nhân lại, ta có đpcm.

13 tháng 3 2016

Ta có bất đẳng thức phụ sau:

 \(\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\le abc\)  \(\left(\text{*}\right)\) với  \(a,b,c\)  là độ dài ba cạnh của một tam giác  \(\left(a,b,c>0\right)\)

Thật vậy,  áp dụng bất đẳng thức AM-GM cho các cặp số dương:

\(\left(a+b-c\right)+\left(c+a-b\right)\ge2\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\)  

\(\Rightarrow\)  \(2a\ge2\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\)

\(\Rightarrow\)  \(a^2\ge\left(a+b-c\right)\left(c+a-b\right)\)  \(\left(1\right)\)

Tương tự áp dụng bất đẳng trên, ta cũng được:

\(b^2\ge\left(a+b-c\right)\left(b+c-a\right)\)  \(\left(2\right)\)  và  \(c^2\ge\left(c+a-b\right)\left(b+c-a\right)\)  \(\left(3\right)\)

Từ  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\)  \(\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\right]^2\)

                                  \(\Rightarrow\)  \(\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\le abc\)  

Dấu  \(''=''\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c\)  \(\Leftrightarrow\)  tam giác đó là tam giác đều