K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

đặt \(\frac{x}{4}=\frac{y}{5}=k\)

\(\Rightarrow\text{ }x=4k\text{ };\text{ }y=5k\)

Thay vào xy = 80, ta được :

\(\left(4k\right).\left(5k\right)=80\)

\(20k^2=80\)

\(k^2=80\text{ }:\text{ }20\)

\(k^2=4\)

\(\Rightarrow\text{ }\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

Nếu k = 2 thì x = 8 ; y = 10

Nếu k = -2 thì x = -8 ; y = -10

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:

$\frac{x}{y}=\frac{3}{2}\Rightarrow x=\frac{3}{2}y$

$\frac{1}{xy}=6$

$\Rightarrow xy=\frac{1}{6}$

$\Rightarrow \frac{3}{2}y.y=\frac{1}{6}$

$\Rightarrow y^2=\frac{1}{9}=(\frac{1}{3})^2=(\frac{-1}{3})^2$

Vì $y<0$ nên $y=\frac{-1}{3}$

$x=\frac{3}{2}y=\frac{3}{2}.\frac{-1}{3}=\frac{-1}{2}$

Mà $\frac{-1}{2}< \frac{-1}{3}$ nên  loại (do $x> y$)

Vậy không tồn tại $x,y$ thỏa mãn đề.

27 tháng 4 2020

a, do x+y=30 và xy=221 nên u và v là nghiệm của pt :

 x2-30x+221=0

\(\Delta^,\)=225-221=4                     ;\(\sqrt{\Delta^,}\)=2

=> pt có hai nghiệm phân biệt .

x1=13                   ; x2=17

Vậy x=13;y=17 hoặc x=17; y=13

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

14 tháng 6 2018

1/ Ta có \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)

=> \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}\)

=> \(\orbr{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)

Vậy \(\orbr{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)thì \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)

15 tháng 6 2018

2    \(xy=\frac{x}{y}\Rightarrow y=\frac{x}{xy}=\frac{1}{y}\Rightarrow y^2=1\Rightarrow y=+-1\)

nếu \(y=1\Rightarrow x+y=xy=x+1=x\Rightarrow x-x=-1\Rightarrow0=-1\)vô lí (loại)

\(\Rightarrow y=-1\Rightarrow x+y=xy=x-1=-x\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)(thỏa mãn)

vậy \(x=\frac{1}{2};y=-1\)

30 tháng 12 2015

x=1 ; y=2

30 tháng 12 2015

x=1;y=2

hoặc

x=-1;y=-2

3 tháng 12 2016

Ta có: \(P=\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2xy}{x-y}\)

\(=x-y+\frac{16}{x-y}\ge2.4=8\)

3 tháng 12 2016

Đặt \(t=x^2+y^2\) thì ta có : 

\(P^2=\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}=\frac{t^2}{t-16}=\frac{1}{\frac{t-16}{t^2}}=\frac{1}{-\frac{16}{t^2}+\frac{1}{t}}=\frac{1}{-16\left(\frac{1}{t}-\frac{1}{32}\right)^2+\frac{1}{64}}\ge\frac{1}{\frac{1}{64}}=64\)

\(\Rightarrow P\ge8\). Đẳng thức xảy ra khi \(\hept{\begin{cases}x^2+y^2=32\\xy=8\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2+2\sqrt{2}\\y=-2+2\sqrt{3}\end{cases}}\)