Tìm các giá trị nguyên của x,y thỏa mãn phương trình:\(\sqrt{x}\) +\(\sqrt{y}\)=\(\sqrt{1998}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
\(A=\dfrac{5\sqrt{a}-3}{\sqrt{a}-2}+\dfrac{3\sqrt{a}+1}{\sqrt{a}+2}-\dfrac{a^2+2\sqrt{a}+8}{a-4}\)
\(=\dfrac{\left(5\sqrt{a}-3\right)\left(\sqrt{a}+2\right)+\left(3\sqrt{a}+1\right)\left(\sqrt{a}-2\right)-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{5a+10\sqrt{a}-3\sqrt{a}-6+3a-6\sqrt{a}+\sqrt{a}-2-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{-a^2+8a-16}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\dfrac{-\left(a-4\right)^2}{a-4}=4-a\)
1: Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=5m+1\\x+y=3m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=3m+2-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=\dfrac{12m+8-5m-1}{4}=\dfrac{7m+7}{4}\end{matrix}\right.\)
Ta có: \(x^2+2y^2=9\)
\(\Leftrightarrow\left(\dfrac{5m+1}{4}\right)^2+2\cdot\left(\dfrac{7m+7}{4}\right)^2=9\)
\(\Leftrightarrow\dfrac{25m^2+10m+1}{16}+\dfrac{2\cdot\left(49m^2+98m+49\right)}{16}=9\)
\(\Leftrightarrow25m^2+10m+1+98m^2+196m+98-144=0\)
\(\Leftrightarrow123m^2+206m-45=0\)
Đến đây bạn tự làm nhé, chỉ cần giải phương trình bậc hai bằng delta thôi
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
ĐK: \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)
pt <=> \(\left(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}\right)+\left(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\right)=28\)(1)
Áp dụng cô-si
VT \(\ge2\sqrt{\frac{36}{\sqrt{x-2}}.4\sqrt{x-2}}+2\sqrt{\frac{4}{\sqrt{y-1}}.\sqrt{y-1}}=28\)
(1) xảy ra <=> \(\hept{\begin{cases}\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{cases}}\)
<=> x = 11 ; y = 5 ( tm )
Kết luận:...
\(\left(x^2y-8x+y-4\right)log_3y=2log_3\dfrac{\sqrt{8x-y+4}}{x}-log_3y=log_3\dfrac{8x-y+4}{x^2y}\)
\(\Rightarrow log_3\left(x^2y\right)+x^2y.log_3y=log_3\left(8x-y+4\right)+\left(8x-y+4\right)log_3y\)
Xét hàm \(f\left(t\right)=log_3t+t.log_3y\Rightarrow f'\left(t\right)=\dfrac{1}{1.ln3}+log_3y>0\)
\(\Rightarrow x^2y=8x-y+4\)
\(\Rightarrow y=\dfrac{8x+4}{x^2+1}\)
Tìm y để pt trên có nghiệm lớn hơn 1, lập BBT \(\Rightarrow y< 6\)
Đặt \(t=\sqrt{x-3}\)\(\left(t\ge0\right)\)
\(\sqrt{8+t}+\sqrt{5-t}=5\)
\(\Leftrightarrow\left(\sqrt{8+t}+\sqrt{5-t}\right)^2=25\)
\(\Leftrightarrow8+t+5-t+2\sqrt{\left(8+t\right)\left(5-t\right)}=25\)
\(\Leftrightarrow2\sqrt{\left(8+t\right)\left(5-t\right)}=12\)
\(\Leftrightarrow\sqrt{\left(8+t\right)\left(5-t\right)}=6\)
\(\Leftrightarrow\left(8+t\right)\left(5-t\right)=36\)
\(\Leftrightarrow t^2+3t-4=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=-4\left(l\right)\end{cases}}\)
thay t=1 = căn (x-3) => x=4
điều kiện x-3 \(\ge0;5-\sqrt{x-3}\ge0\)(1)
đặt \(\sqrt{8+\sqrt{x-3}}=a\left(a\ge\sqrt{8}\right);\sqrt{5-\sqrt{x-3}}=b\left(b\ge0\right)\)
\(\hept{\begin{cases}a+b=5\\a^2+b^2=13\end{cases}< =>\hept{\begin{cases}a=5-b\\\left(5-b\right)^2+b^2=13\end{cases}< =>}}\)\(\hept{\begin{cases}a=5-b\\2b^2-10b+12=0\end{cases}< =>\hept{\begin{cases}a=3\\b=2\end{cases};\hept{\begin{cases}a=2\\b=3\end{cases}}}}\)
chỉ có a=3 là thoảm= mãn a \(\ge\sqrt{8}\)
\(\hept{\begin{cases}a=3\\b=2\end{cases}< =>\hept{\begin{cases}8+\sqrt{x-3}=9\\5-\sqrt{x-3}=4\end{cases}< =>x=4}}\)(thỏa mãn (1))
vậy x=4
Lời giải:
ĐKĐB $\Leftrightarrow x+y=\sqrt{x+6}+\sqrt{y+6}$
$\Rightarrow (x+y)^2=(\sqrt{x+6}+\sqrt{y+6})^2\leq (x+6+y+6)(1+1)$ (theo BĐT Bunhiacopxky)
$\Leftrightarrow (x+y)^2\leq 2(x+y+12)$
$\Leftrightarrow (x+y)^2-2(x+y)-24\leq 0$
$\Leftrightarrow (x+y+4)(x+y-6)\leq 0$
$\Leftrightarrow -4\leq x+y\leq 6$
Vậy $A_{\max}=6$
\(\sqrt{x}+\sqrt{y}=3\sqrt{222}\)
\(3\sqrt{222}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{222}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in Z\)
\(\Rightarrow\) \(a+b=3\)
Xét 4 TH:
- Nếu a = 0 thì b = 3
- Nếu a = 1 thì b = 2
- Nếu a = 2 thì b = 1
- Nếu a = 3 thì b = 0
Từ đó dễ dàng tìm được x, y
:)) Giải thích kiểu này .
bài 2đ
BGK chỉ chấm 1 đ thôi!!!^^
:)) Mình đã từng làm như vậy cô giáo cho mình như vậy.