K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

a) Để \(M=\frac{x-2}{3x+2}=0\)

Thì x - 2 = 0

=> x = 2

1 tháng 7 2017

a) x = 2

b) x > 2

c) x < 2

a: Δ=(-2m)^2-4*3*1=4m^2-12

Để phương trình có nghiệm kép thì 4m^2-12=0

=>m^2=3

=>\(m=\pm\sqrt{3}\)

b: 

TH1: m=0

=>-6x-3=0

=>x=-1/2(nhận)

TH2: m<>0

Δ=(-6)^2-4*4m*(-m-3)

=36-16m(-m-3)

=36+16m^2+48m

=16m^2+48m+36

Để phương trình có nghiệm kép thì 16m^2+48m+36=0

=>m=-3/2

c: TH1: m=-2

=>-2(-2-1)x+4=0

=>6x+4=0

=>x=-2/3(nhận)

TH2: m<>-2

Δ=(2m-2)^2-4(m+2)*4

=4m^2-16m+4-16m-32

=4m^2-32m-28

Để pt có nghiệm kép thì 4m^2-32m-28=0

=>\(m=\dfrac{16\pm6\sqrt{11}}{5}\)

d: TH1: m=6

=>18x-2=0

=>x=1/9(nhận)

TH2: m<>6

Δ=(3m)^2-4*(-2)(m-6)

=9m^2+8m-48

Để pt có nghiệm kép thì 9m^2+8m-48=0

=>\(m=\dfrac{-4\pm8\sqrt{7}}{9}\)

26 tháng 6 2016

ĐKXĐ: \(x\ne0\)

+ M < 0 \(\Rightarrow\frac{x-1}{x}< 0\)

  •    x - 1 > 0 => x > 1 và x < 0 => x > 1 và x < 0 (vô lí)
  •    x - 1 < 0 => x < 1 và x > 0 => 0 < x < 1

                Vậy 0 < x < 1

+ M > 0 \(\Rightarrow\frac{x-1}{x}>0\)

  •    x - 1 > 0 => x > 1 và x > 0 => x > 1
  •    x - 1 < 0 => x < 1 và x < 0 => x < 0

                Vậy x < 0 hoặc x > 1

+ M = 0 \(\Rightarrow\frac{x-1}{x}=0\Rightarrow x-1=0\Rightarrow x=1\)

                 Vậy x = 1

11 tháng 3 2020

ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)

\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)

Đề sai à ??

20 tháng 9 2021

a)A rỗng với mọi m

b)B rỗng với m>-8

3 tháng 4 2021

a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)

\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)

\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)

b, Ta có : \(\left(x+5\right)^2-9x-45=0\)

\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)

TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)

c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)

\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

x - 21-13-3
x315-1
3 tháng 4 2021

d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)

\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )

e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)

TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )

TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)