K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

ta có 2 . /x/ > hoặc = 0 (1)

ta lại có /x-8/ > hoặc bằng 0  (2)

từ (1) và (2) => E nhỏ nhất khi E = 0 

=> GTNN của E = 0 

12 tháng 9 2015

B=x2-2.x.1/2+1/4+3/4=(x-1/2)2+3/4>=3/4 VỚI MỌI X

DẤU "=" XẢY RA khi x-1/2=0<=>x=1/2

vậy minB=3/4 tại x=1/2

8 tháng 7 2018

\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|+\left|x-5\right|\)

\(\Rightarrow A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|4-x\right|+\left|5-x\right|\)

\(\Rightarrow A\ge x-1+x-2+0+4-x+5-x\)

\(\Rightarrow A\ge6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1\ge0;x-2\ge0\\x-3=0\\x-4\le0;x-5\le0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\Rightarrow x\in\left(2;3;4\right)\)

Vậy MinA = 6 \(\Leftrightarrow x\in\left(2,3,4\right)\)

8 tháng 7 2018

Phạm Tuấn Đạt dùng lý thuyết nào vậy?

23 tháng 1 2017

\(-4.\left(2x+9\right)-\left(-8x+3\right)-\left(x+13\right)=0\)

                      \(-8x-36+8x-3-x-13=0\)

                                                               \(-x-52=0\)

                                                                              \(x=-52\)

k mk nha

thank you very much

23 tháng 1 2017

đề KT 1 tiết hồi chiều lp a1 của mk!

5 tháng 4 2019

\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)

\(\Leftrightarrow Px^2-2P=2x-1\)

\(\Leftrightarrow Px^2-2x-2P+1=0\)

*Nếu P = 0 thì ....

*Nếu P khác 0 thì pt trên là bậc 2

\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)

Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)

Nên Pmin = -1 

Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn

5 tháng 4 2019

denta ak bạn 

Bạn tham khảo cách làm của bài này rồi áp vào bài bạn nhé !!!

VD : Cho các số thực ko âm x, y thay đổi và thỏa mản 3x + y = 9 tìm GTLN GTNN của biểu thức 

A= x^3 -xy

Đáp án :

 Ta rút được y=9-3x. Với điều kiện x, y không âm ta được 0=<x=<3. 
* A=x³ -x(9-3x)=x³ + 3x² -9x. 
Ta có A-27=...=(x-3)(x+3)² =<0 vì x-3=<0, (x+3)² >0. 
Dấu bằng xảy ra khi và chỉ khi x=3, từ đó có GTLN của A là 27. Đạt đc khi x=3, y=0. 

Lại có A+5=...=(x-1)² (x+5) >=0 với mọi x thỏa mãn 0=<x=<3. 
GTNN của A là -5, đạt đc khi x=1; y=6.

8 tháng 2 2019

Vì |x-2| \(\ge\) 0 nên A = |x-2| + 5 \(\ge\) 0+5  =  5.

Đẳng thức xảy ra <=> |x-2| = 0 <=> x-2 = 0 <=> x=2.

Vậy GTNN của A bằng 5 khi x = 2.

24 tháng 1 2017

- 2(x + 6) + 6(x - 10) = 8

<=> - 2x - 12 + 6x - 60 = 8

<=> ( - 2x + 6x ) - ( 12 + 60 ) = 8

<=> 4x - 72 = 8

<=> 4x = 80

=> x = 20

19 tháng 7 2016

Kuri:bạn sai 1 lỗi rất lớn đó là x ko thể nhận cùng lúc 2 giá trị vs bài này ta nên dùng BĐT |a|+|b|>=|a+b|

\(\left|x-2\right|+\left|x+8\right|\ge\left|x-2-8-x\right|=10\)

\(\Rightarrow A\ge10\)

Dấu = khi ab>=0 =>(x-2)(x+8)>=0 =>2=<x=<8

Vậy...

19 tháng 7 2016

Vì |x - 2| và |x + 8| đồng thời lớn hơn hoặc bằng 0

=> |x - 2| + |x + 8| lớn hơn hoặc 0

Để A nhận được GTNN thì |x - 2| + |x + 8| = 0

=> |x - 2| = 0; |x + 8| = 0

*) |x - 2| = 0 => x - 2 = 0 hoặc 2 - x = 0

=> x = 2 

*) |x + 8| = 0 => x + 8 = 0 hoặc -x - 8 = 0

=> x = -8