cho 2 số \(x,y\in N \)và \(x-y⋮7\).chứng minh \(4x+3y⋮ 7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cau 1:
2x+5y chia hết cho 7
=>2(2x+5y) chia hết cho 7
4x+10y chia hết cho 7
(4x+3y)+7y chia hết cho 7
mà 7y chia hết cho 7
nên 4x+3y chia hết cho 7
Vậy 4x+3y chia hết cho 7 khi 2x+5y chia hết cho 7
cau 2:
Vì 2x7y2¯¯¯¯¯¯¯¯¯¯¯¯¯⋮36⇒2x7y2¯¯¯¯¯¯¯¯¯¯¯¯¯⋮92x7y2¯⋮36⇒2x7y2¯⋮9 và ⋮4.⋮4.
Các số chia hết cho 9 có tổng các chữ số chia hết cho 9 nên:
2+x+7+y+2⋮92+x+7+y+2⋮9
Hay11+x+y⋮911+x+y⋮9 (1)
Các số chia hết cho 4 có 2 chữ số tận cùng chia hết cho 4 nên:
y2¯¯¯¯¯⋮4y2¯⋮4
⇒⇒ y∈{1;3;5;7;9}y∈{1;3;5;7;9} thì y2¯¯¯¯¯⋮4y2¯⋮4
Nếu y=1y=1 thì thay vào (1) ta được:
11+xx +1 ⋮9⋮9
⇒⇒ x=6x=6
Tương tự:
y=3y=3 thì 11+x+3x+3 ⋮⋮ 9
⇒⇒ xx =4
y=5y=5 thì 11+xx +5⋮⋮ 9
⇒⇒ xx =2
y=7y=7 thì 11+x+7⋮9x+7⋮9
⇒⇒ xx =0 hoặc xx =9
y=9y=9 thì 11+x+9⋮911+x+9⋮9
⇒⇒ xx =7
Vậy ta có các số:
27792;20792;29772;22752;24732;26712.
k nha
Ta có : x2 + y2 + z2 - yz - 4x - 3y + 7
= [x2 - 4x + 4]+[\(\frac{1}{4}\)* y2 - yz + z2 ] + [ \(\frac{3}{4}\cdot(y^2-4y+4)]\)
= (x-2)^2 + (y/2 - z)^2 + 3/4.(y-2)^2 >= 0
=> đpcm
Chúc bạn học tốt
Lời giải:
\(\left\{\begin{matrix} 3x-y+1\vdots 7\\ 2x+3y-1\vdots 7\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 3(3x-y+1)\vdots 7\\ 2x+3y-1\vdots 7\end{matrix}\right.\)
\(\Rightarrow 3(3x-y+1)+(2x+3y-1)\vdots 7\)
\(\Rightarrow 11x+2\vdots 7\)
\(\Rightarrow 11(x-3)+35\vdots 7\Rightarrow 11(x-3)\vdots 7\Rightarrow x-3\vdots 7\)
\(\Rightarrow x\) chia 7 dư $3$
Đặt $x=7k+3$ thì:
\(3x-y+1\vdots 7\)
\(\Rightarrow 3(7k+3)-y+1\vdots 7\)
\(\Rightarrow 21k+7+3-y\vdots 7\Rightarrow 3-y\vdots 7\)
\(\Rightarrow y-3\vdots 7\) hay $y$ chia $7$ dư $3$
Vậy $x,y$ chia $7$ đều dư $3$
2x + 3y chia hết cho 7
=> 3(2x+3y) chia hết cho 7
hay 6x+ 9y chia hết cho 7 (1)
3x + y chia hết cho 7
=> 2(3x+y) chia hết cho 7
hay 6x + 2y chia hết cho 7
xét hiệu
=> 6x + 9y - (6x + 2y)
= 6x -+ 9y - 6x - 2y
= 7y chia hết cho 7 (2)
từ 1 và 2
=> 6x + 2y chia hết cho 7
hay 3x + y chia hết cho 7 (đpcm)
a, Giả sử \(x,y \vdots 3\)
=> \(x^2 ;y^2 \) : 3 dư 1
=> \(z^2 = x^2+y^2 \) : 3 dư 2 ( vô lý vì \(z^2\) là số chính phương )
Vậy \(x\vdots 3y\vdots 3 => xy \vdots 3\)
Chứng minh tương tự \(xy \vdots 4\)
\((3;4) =1 => xy \vdots 12\)
4x + 3y = 4x - 4y + 7y = 4(x - y) + 7y
Vì x - y \(⋮\) 7 => 4(x - y) \(⋮\) 7 và 7y \(⋮\) 7 => 4(x - y) + 7y \(⋮\) 7
Vậy 4x + 3y \(⋮\) 7