K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$

$\Leftrightarrow (\frac{1}{a}+\frac{1}{b})+(\frac{1}{c}-\frac{1}{a+b+c})=0$

$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$

$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$
$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$

$\Leftrightarrow \frac{(a+b)(c+a)(c+b)}{abc(a+b+c)}=0$

$\Leftrightarrow (a+b)(c+a)(c+b)=0$

$\Leftrightarrow a+b=0$ hoặc $c+a=0$ hoặc $c+b=0$

Không mất tổng quát giả sử $a+b=0$

$\Leftrightarrow a=-b$.

Khi đó:

$\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$

$=\frac{-1}{b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$

$=\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}+b^{2017}+c^{2017}}$

$=\frac{1}{a^{2017}+b^{2017}+c^{2017}}$ (đpcm)

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Lần sau bạn lưu ghi đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt nhất. Mọi người đọc đề của bạn dễ hiểu thì cũng sẽ dễ giúp hơn.

cho tam giác ABC hay là ÂBC

26 tháng 6 2016

Gọi 3 cạnh của tam giác là a,b,c:

Ta có:a+b+c=62,a/5=b/7=c/8

=)a+b+c/5+7+8=62/20=31/10

=)a=31x5/10=15,5cm

=)b=31x7/10=21,7cm

=)c=31x8/10=24,8cm

16 tháng 7 2018

rrrrrrrrrrrrrrrrrrrrrrrrrr

16 tháng 7 2018

A B C D K M

a, Xét t/g ABD và t/g ACD có:

AB=AC(gt),BD=CD(gt),AD chung 

=> t/g ABD = t/g ACD (c.c.c)

=> góc DAB = góc DAC (2 góc tương ứng)

=> AD là tia p/g của góc BAC

b, Ta có: \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-20^o}{2}=80^o\) (tam giác ABC cân tại A)

Vì t/g DBC đều => góc DBC = góc DCB = góc BDC = 60 độ

=> góc ABD = góc ABC - góc DBC = 80 độ - 60 độ = 20 độ

=> góc BAC = góc ABD = 20 độ

Lại có: góc ABM = góc DBM = góc ABC / 2 = 20 độ/2 = 10 độ (BM là tia p/g của góc ABD)

góc DAB = góc DAC = góc BAC/2 = 20 độ / 2 = 10 độ (AD là tia p/g của góc BAC)

=> góc ABM = góc DAB = 10 độ

Xét t/g ABM và t/g BAD có:

góc ABM = góc DAB (c/m trên), AB chung, góc BAM = góc ABD (c/m trên)

=> t/g ABM  = t/g BAD (g.c.g)

=>AM = BD (2 cạnh tương ứng)

Mà BD = BC (t/g DBC đều)

=> AM = BC 

P/s: hình vẽ minh họa thôi

4 tháng 7 2016

Các bạn trả lời giúp mình nhanh nhé, khó nhất là câu vì sao kìa. Thanks nhìu nha