Cho a,b,c # 0 và a+b+c#0 thỏa mãn 1/a+1/b+1/c=1/a+b+c cmr 1/a^2017+1/b^2017+1/c^2017=1/a^2017+b^2017+c^2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Gọi 3 cạnh của tam giác là a,b,c:
Ta có:a+b+c=62,a/5=b/7=c/8
=)a+b+c/5+7+8=62/20=31/10
=)a=31x5/10=15,5cm
=)b=31x7/10=21,7cm
=)c=31x8/10=24,8cm

A B C D K M
a, Xét t/g ABD và t/g ACD có:
AB=AC(gt),BD=CD(gt),AD chung
=> t/g ABD = t/g ACD (c.c.c)
=> góc DAB = góc DAC (2 góc tương ứng)
=> AD là tia p/g của góc BAC
b, Ta có: \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-20^o}{2}=80^o\) (tam giác ABC cân tại A)
Vì t/g DBC đều => góc DBC = góc DCB = góc BDC = 60 độ
=> góc ABD = góc ABC - góc DBC = 80 độ - 60 độ = 20 độ
=> góc BAC = góc ABD = 20 độ
Lại có: góc ABM = góc DBM = góc ABC / 2 = 20 độ/2 = 10 độ (BM là tia p/g của góc ABD)
góc DAB = góc DAC = góc BAC/2 = 20 độ / 2 = 10 độ (AD là tia p/g của góc BAC)
=> góc ABM = góc DAB = 10 độ
Xét t/g ABM và t/g BAD có:
góc ABM = góc DAB (c/m trên), AB chung, góc BAM = góc ABD (c/m trên)
=> t/g ABM = t/g BAD (g.c.g)
=>AM = BD (2 cạnh tương ứng)
Mà BD = BC (t/g DBC đều)
=> AM = BC
P/s: hình vẽ minh họa thôi

Các bạn trả lời giúp mình nhanh nhé, khó nhất là câu vì sao kìa. Thanks nhìu nha
Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$
$\Leftrightarrow (\frac{1}{a}+\frac{1}{b})+(\frac{1}{c}-\frac{1}{a+b+c})=0$
$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$
$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$
$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$
$\Leftrightarrow \frac{(a+b)(c+a)(c+b)}{abc(a+b+c)}=0$
$\Leftrightarrow (a+b)(c+a)(c+b)=0$
$\Leftrightarrow a+b=0$ hoặc $c+a=0$ hoặc $c+b=0$
Không mất tổng quát giả sử $a+b=0$
$\Leftrightarrow a=-b$.
Khi đó:
$\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$
$=\frac{-1}{b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$
$=\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}+b^{2017}+c^{2017}}$
$=\frac{1}{a^{2017}+b^{2017}+c^{2017}}$ (đpcm)
Lần sau bạn lưu ghi đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt nhất. Mọi người đọc đề của bạn dễ hiểu thì cũng sẽ dễ giúp hơn.