Tìm giá trị lớn nhất của biểu thức A = ( a - √a) : 3a. Vs a>0, a khác 4;1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = -a2 + 3a + 4
A = -( a2 - 3a + 9/4 ) + 25/4
A = -( a - 3/2 )2 + 25/4
-( a - 3/2 )2 ≤ 0 ∀ x => -( a - 3/2 )2 + 25/4 ≤ 25/4
Đẳng thức xảy ra <=> a - 3/2 = 0 => a = 3/2
=> MaxA = 25/4 <=> a = 3/2
\(A=-a^2+3a+4\)
\(\Rightarrow A=-a^2+3a-\frac{9}{4}+\frac{25}{4}\)
\(\Rightarrow A=-\left(a-\frac{3}{2}\right)^2+\frac{25}{4}\)
Vì \(\left(a-\frac{3}{2}\right)^2\ge0\forall a\)\(\Rightarrow-\left(a-\frac{3}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(a-\frac{3}{2}\right)^2=0\Leftrightarrow a-\frac{3}{2}=0\Leftrightarrow a=\frac{3}{2}\)
Vậy maxA = 25/4 <=> a = 3/2
![](https://rs.olm.vn/images/avt/0.png?1311)
P = \(\frac{1}{15}\left(3a\right)\left(5b\right)\le\frac{1}{15}\cdot\frac{\left(3a+5b\right)^2}{4}=\frac{12}{5}\)
ta có \(12=3a+5b\ge2\sqrt{3a\cdot5b}=2\sqrt{15ab}\)
==> \(ab\le\frac{36}{15}=\frac{12}{5}\)
dấu '=' xảy ra khi a;b thỏa mãn hệ pt \(3a=5bva3a+5b=12\)
=>a=2; b=6/5
![](https://rs.olm.vn/images/avt/0.png?1311)
BÀI 1 : cho x+y=2 ................
GIẢI :
TA CÓ :x2+y2\(\ge\)\(\frac{\left(x+2\right)^2}{2}\)=2
MIN =2 khi x=y=1
BÀI 2: cho a,b>0 và ...........
GIẢI:
12=3a+5b \(\ge\)2\(\sqrt{3a.5b}\)
\(=2\sqrt{15ab}=>ab\le\frac{36}{15}=\frac{12}{15}\)
dấu "=" xảy ra khi 3a=5b,3a+5b=12
<=>a=2,b=6/5
tk mk nha !\(\phi\Phi\alpha\omega\Phi\varepsilon\partial\beta\)
A - 2√a nhé, mk nhầm