K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =8/4-1/4=7/4

b: =3/9=1/3

c: =5/7-4/7=1/7

17 tháng 8 2022

a,\(\dfrac{7}{4}\)

b,\(\dfrac{1}{3}\)

c,\(\dfrac{1}{7}\)

 

25 tháng 6 2023

\(a,\dfrac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}\\ =\dfrac{\sqrt{2}.\sqrt{5}-\sqrt{3}.\sqrt{5}}{\sqrt{2}.\sqrt{4}-\sqrt{3}.\sqrt{4}}\\ =\dfrac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{4}\left(\sqrt{2}-\sqrt{3}\right)}\\ =\dfrac{\sqrt{5}}{\sqrt{2^2}}\\ =\dfrac{\sqrt{5}}{2}\)

\(b,\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\\ =\dfrac{\sqrt{5}.\sqrt{3}-\sqrt{3}.\sqrt{2}}{\sqrt{5}.\sqrt{7}-\sqrt{7}.\sqrt{2}}\\ =\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}\\ =\dfrac{\sqrt{3}}{\sqrt{7}}\)

\(c,\dfrac{5+\sqrt{5}}{\sqrt{10}+\sqrt{2}}\\ =\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}=\dfrac{\sqrt{5}}{\sqrt{2}}\)

25 tháng 6 2023

\(a,=\dfrac{\sqrt{2}.\sqrt{5}-\sqrt{3}.\sqrt{5}}{2\sqrt{2}-2\sqrt{3}}\\ =\dfrac{\sqrt{5}.\left(\sqrt{2}-\sqrt{3}\right)}{2\left(\sqrt{2}-\sqrt{3}\right)}\\ =\dfrac{\sqrt{5}}{2}\)

\(b,=\dfrac{\sqrt{3}.\sqrt{5}-\sqrt{2}.\sqrt{3}}{\sqrt{5}.\sqrt{7}-\sqrt{2}.\sqrt{7}}\\ =\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}\\ =\dfrac{\sqrt{3}}{\sqrt{7}}=\dfrac{\sqrt{21}}{7}\)

\(c,=\dfrac{\sqrt{5}.\sqrt{5}+\sqrt{5}}{\sqrt{2}.\sqrt{5}+\sqrt{2}}\\ =\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}\\ =\dfrac{\sqrt{5}}{\sqrt{2}}=\dfrac{\sqrt{10}}{2}\)

4 tháng 7 2021

a) \(A=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}-\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|\)

\(=\sqrt{3}-1+-\sqrt{3}-1=-2\)

b) \(B=\sqrt{11-6\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{3^2-2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)

\(=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\left|3-\sqrt{2}\right|-\left|\sqrt{2}-1\right|\)

\(=3-\sqrt{2}-\sqrt{2}+1=4-2\sqrt{2}\)

c) \(C=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left(\sqrt{5}+\sqrt{3}\right)\left|\sqrt{5}-\sqrt{2}\right|\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{2}\right)=5-\sqrt{10}+\sqrt{15}-\sqrt{6}\)

20 tháng 6 2023

loading...

20 tháng 6 2023

\(1,\)

\(a,\sqrt{6-2\sqrt{5}}=\sqrt{\sqrt{5^2}-2.\sqrt{5}.1+1}=\sqrt{\left(\sqrt{5}-1\right)^2}=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)

\(b,\sqrt{8+2\sqrt{7}}=\sqrt{\sqrt{7^2}+2.\sqrt{7}.1+1}=\sqrt{\left(\sqrt{7}+1\right)^2}=\left|\sqrt{7}+1\right|=\sqrt{7}+1\)

\(2,\)

\(a,\sqrt{\left(\sqrt{10}-3\right)^2}-\sqrt{10}\)

\(=\left|\sqrt{10}-3\right|-\sqrt{10}\)

\(=\sqrt{10}-\sqrt{10}-3\)

\(=-3\)

\(b,\sqrt{\left(5+\sqrt{7}\right)^2}-\sqrt{8-2\sqrt{7}}\)

\(=\left|5+\sqrt{7}\right|-\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(=5+\sqrt{7}-\left|\sqrt{7}-1\right|\)

\(=5+\sqrt{7}-\sqrt{7}+1\)

\(=6\)

a: \(\left(a-b-c\right)-\left(-c+b+a\right)-\left(a-b\right)\)

\(=a-b-c+c-b-a-a+b\)

\(=-a-b\)

b: \(a\left(b+c\right)-a\left(b+d\right)-\left(1+ac-ad\right)\)

\(=ab+ac-ab-ad-1-ac+ad\)

=-1

24 tháng 9 2021

\(a,=\sqrt{2}\left(\sqrt{5}+3\right)\sqrt{\left(3-\sqrt{5}\right)^2}=\sqrt{2}\left(\sqrt{5}+3\right)\left(3-\sqrt{5}\right)=4\sqrt{2}\\ b,=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\sqrt{4}=2\)

24 tháng 9 2021

a)\(=\left(\sqrt{10}+3\sqrt{2}\right)\sqrt{\left(3-\sqrt{5}\right)^2}=\left(\sqrt{10}+3\sqrt{2}\right)\left(3-\sqrt{5}\right)=3\sqrt{10}-5\sqrt{2}+9\sqrt{2}-3\sqrt{10}=4\sqrt{2}\)

b) \(=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\sqrt{9-5}=\sqrt{4}=2\)

Bài 1: 

a) \(\dfrac{a+\sqrt{a}}{\sqrt{a}}=\sqrt{a}+1\)

b) \(\dfrac{\sqrt{\left(x-3\right)^2}}{3-x}=\dfrac{\left|x-3\right|}{3-x}=\pm1\)

Bài 2: 

a) \(\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}=\pm\dfrac{1}{3x+1}\)

b) \(4-x-\sqrt{x^2-4x+4}=4-x-\left|x-2\right|=\left[{}\begin{matrix}6-2x\left(x\ge2\right)\\2\left(x< 2\right)\end{matrix}\right.\)

 

27 tháng 6 2021

`a)Đặt \, A=sqrt{21+3sqrt{48}}-sqrt{21-3sqrt{48}}`

Vì `21+3sqrt{48}>21-3sqrt{48}`

`=>sqrt{21+3sqrt{48}}-sqrt{21-3sqrt{48}}>0`

Hay `A>0`

`<=>A^2=21+3sqrt{48}+21-3sqrt{48}-2sqrt{21^2-9.48}`

`<=>A^2=42-2sqrt{9}=32-2.3=26`

`<=>A=sqrt{26}(do \ A>0)`

27 tháng 6 2021

b)Chắc đề là như này:

`sqrt{7-2sqrt{10}}-sqrt{7+2sqrt{10}}`

`=sqrt{5-2sqrt{5}.sqrt2+2}-sqrt{5+2sqrt{5}.sqrt2+2}`

`=sqrt{(sqrt5-sqrt2)^2}-sqrt{(sqrt5+sqrt2)^2}`

`=sqrt5-sqrt2-sqrt5-sqrt2=-2sqrt2`

a: =ab-ac+ad-ad=ab-ac

b:=(c+d)(a-b-a+b)=0

các bạn giúp mình làm bài toán này nhé !

15 tháng 11 2021

Bài 1:

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\left(do.a+b+c\ne0\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)

\(M=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\dfrac{3a^2}{\left(3a\right)^2}=\dfrac{3a^2}{9a^2}=\dfrac{1}{3}\)

15 tháng 11 2021

Bài 2:

a) \(=\dfrac{x\left(x^2+x-6\right)}{x\left(x^2-4\right)}=\dfrac{x\left(x-2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x+3}{x+2}\)

b) \(=\dfrac{x\left(x+1\right)+7\left(x+1\right)}{x\left(x^2+2x+1\right)}=\dfrac{\left(x+1\right)\left(x+7\right)}{x\left(x+1\right)^2}=\dfrac{x+7}{x\left(x+1\right)}=\dfrac{x+7}{x^2+x}\)