Tìm ƯCLN và BCNN của:
a)3.5² và 5².7
b)2².3.5;3².7 và 3.5.11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3.5^2 \) và \(5^2.7\)
+) Thừa số nguyên tố chung là 5 và thừa số nguyên tố riêng là 3 và 7
+) Số mũ nhỏ nhất của 5 là 2 nên ƯCLN cần tìm là \(5^2 = 25\)
+) Số mũ lớn nhất của 3 là 1, của 5 là 2, của 7 là 1 nên BCNN cần tìm là \(3.5^2.7=525\)
Vậy ƯCLN cần tìm là 25; BCNN cần tìm là 525.
b) \(2^2.3.5; 3^2.7\) và \(3.5.11\)
+) Thừa số nguyên tố chung là 3 và thừa số nguyên tố riêng là 2; 5; 7; 11
+) Số mũ nhỏ nhất của 3 là 1 nên ƯCLN cần tìm là 3
+) Số mũ lớn nhất của 2 là 2, của 3 là 2, của 5 là 1, của 7 là 1, của 11 là 1 nên BCNN cần tìm là \(2^2. 3^2. 5. 7.11=13 860\)
Vậy ƯCLN cần tìm là 3; BCNN cần tìm là 13 860.
a) 2.33 và 3.5
Ta thấy các thừa số nguyên tố chung là 3 và thừa số nguyên tố riêng là 2 và 5. Số mũ lớn nhất của 3 là 3; của 2 là 1; của 5 là 1.
Vậy BCNN cần tìm là 2.33.5 = 270
b) 2.5.72 và \(3.5^2.7\)
Ta thấy các thừa số nguyên tố chung là 5 và 7; thừa số nguyên tố riêng là 2 và 3. Số mũ lớn nhất của 5 là 2; của 7 là 2; của 2 là 1, của 3 là 1.
Vậy BCNN cần tìm là 2.3.52.72 = 7350.
Bài 1: Vì mỗi số nguyên tố chỉ có ước là 1 và chính nó mà 79 và 97 là hai số nguyên tố khác nhau nên ƯCLN(79, 97) = 1 và BCNN (79, 97) = 79.97 = 7 663.
Bài 2:
ƯCLN (3a.52; 33.5b). BCNN = (3a.52; 33.5b) = ( 33.53).(34.53)
= (33.34).(52.53) = 33+4.52+3 = 37.55
Tích của 2 số đã cho:(3a.52).(33.5b) = ( 3a.33).(52.5b) = 3a+3.5b+2
Ta có tích của hai số bằng tích của ƯCLN và BCNN của hai số ấy nên:
37.55= 3a+3.5b+2. Do đó: a + 3 = 7 ⇒ a = 7 – 3 = 4
và b + 2 = 5 ⇒ b = 5 -2
Vậy a = 4 và b = 3.
a.
Vì $ƯCLN(a,b)=48$ nên đặt $a=48x, b=48y$ với $(x,y)=1$. Ta có:
$5a=13b$
$\Rightarrow 5.48x=13.48y$
$\Rightarrow 5x=13y$
$\Rightarrow 5x\vdots 13; 13y\vdots 5$
$\Rightarrow x\vdots 13; y\vdots 5$. Đặt $x=13m, y=5n$. Do $(x,y)=1$ nên $(n,m)=1$.
Ta có: $5.13m=13.5n\Rightarrow m=n$. Vì $(m,n)=1$ nên $m=n=1$
$\Rightarrow x=13; y=5$
$\Rightarrow x=13.48=624; y=5.48=240$
b.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$.
Khi đó:
$BCNN(a,b)=dxy=360$
$ab=dx.dy=d.dxy=6480$
$\Rightarrow d.360=6480$
$\Rightarrow d=18$
$\RIghtarrow xy=360:d=360:18=20$
Do $(x,y)=1$ nên $x,y$ có thể nhận các cặp giá trị là:
$(x,y)=(1,20), (4,5), (5,4), (20,1)$
Đến đây bạn thay vào tìm $a,b$ thôi.
a) Ước chung lớn nhất và bội chung nhỏ nhất của \(3\cdot5^2,5^2\cdot7\)
\(\text{Ư}CLN\left(3\cdot5^2,5^2\cdot7\right)=5^2=25\)
\(BCNN\left(3\cdot5^2,5^2\cdot7\right)=3\cdot7\cdot5^2=525\)
b) Ước chung lớn nhất và bội chung nhỏ nhất của \(2^2\cdot3\cdot5,3^2\cdot7\) và \(3\cdot5\cdot11\)
\(\text{Ư}CLN\left(2^2\cdot3\cdot5,3^2\cdot7,3\cdot5\cdot11\right)=3\)
\(BCNN\left(2^2\cdot3\cdot5,3^2\cdot7,3\cdot5\cdot11\right)=2^2\cdot3^2\cdot5\cdot7\cdot11=13860\)