K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

\(2x^2+5xy+3y^2\\= 2x^2+2xy+3xy+3y^2\\= 2x\left(x+y\right)+3y\left(x+y\right)\\=\left(2x+3y\right)\left(x+y\right) \)

27 tháng 12 2021

2x^2-5xy-3y^2

 = 2^x + xy - 6xy - 3y^2  

= x(2x + y) - 3y(2x + y)  

= (2x + y)(x - 3y)

NV
3 tháng 1 2024

\(\Leftrightarrow x^2+3xy+3y^2+xy-2x-6y=5\)

\(\Leftrightarrow x\left(x+3y\right)+y\left(x+3y\right)-2\left(x+3y\right)=5\)

\(\Leftrightarrow\left(x+y-2\right)\left(x+3y\right)=5\)

Bảng giá trị:

x+y-2-5-115
x+3y-1-551
x-44210
y1-31-3

Vậy \(\left(x;y\right)=\left(-4;1\right);\left(4;-3\right);\left(2;1\right);\left(10;-3\right)\)

6 tháng 8 2021

6x2-3xy+17x-4y+5=0

⇔ -3xy-4y=-6x2-17x-5

⇔ 3xy+4y=6x2+17x+5

⇔ y(3x+4)=6x2+17x+5

6x2+17x+5 ⋮ 3x-4 vì x, y ∈ Z

⇔ 6x2+17x+12-7 ⋮ 3x+4

⇔ 6x2+8x+9x+12-7 ⋮ 3x+4

⇔ 2x(3x+4)+3(3x+4)-7 ⋮ 3x+4

=> 7 ⋮ 3x+4

=> 3x+4 ∈ Ư(7)={-1,1,-7,7}

3x+4=1 ⇔ x=-1 (lấy)

3x+4=-1 ⇔ x=\(\dfrac{-5}{3}\) (loại)

3x+4=-7 ⇔ x=\(\dfrac{-11}{3}\)(loại)

3x+4=7 ⇔ x=1 (lấy)

thay vào tính thì y={-6,4} (bạn tự làm nhá)

vậy (x,y)={(-1,1),(-6,4)}

 

 

 

 
26 tháng 3 2018

Phương trình bậc hai 6x2 + x + 5 = 0

Có a = 6; b = 1; c = 5; Δ = b2 – 4ac = 12 – 4.5.6 = -119 < 0

Vậy phương trình vô nghiệm.

24 tháng 7 2017

 Phương trình bậc hai 6x2 + x – 5 = 0

Có a = 6; b = 1; c = -5; Δ = b2 – 4ac = 12 – 4.6.(-5) = 121 > 0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

 

Vậy phương trình có hai nghiệm là -1 và Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

 

19 tháng 4 2019

a) Phương trình bậc hai

2 x 2   –   7 x   +   3   =   0

Có: a = 2; b = -7; c = 3;

Δ   =   b 2   –   4 a c   =   ( - 7 ) 2   –   4 . 2 . 3   =   25   >   0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm là 3 và Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) Phương trình bậc hai  6 x 2   +   x   +   5   =   0

Có a = 6; b = 1; c = 5; 

Δ   =   b 2   –   4 a c   =   12   –   4 . 5 . 6   =   - 119   <   0

Vậy phương trình vô nghiệm.

c) Phương trình bậc hai  6 x 2   +   x   –   5   =   0

Có a = 6; b = 1; c = -5;

Δ   =   b 2   –   4 a c   =   12   –   4 . 6 . ( - 5 )   =   121   >   0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm là -1 và Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) Phương trình bậc hai  3 x 2   +   5 x   +   2   =   0

Có a = 3; b = 5; c = 2;

Δ   =   b 2   –   4 a c   =   5 2   –   4 . 3 . 2   =   1   >   0

Áp dụng công thức nghiệm, phương trình có hai nghiệm phân biệt là:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có hai nghiệm là -1 và Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

e) Phương trình bậc hai  y 2   –   8 y   +   16   =   0

Có a = 1; b = -8; c = 16;  Δ   =   b 2   –   4 a c   =   ( - 8 ) 2   –   4 . 1 . 16   =   0 .

Áp dụng công thức nghiệm ta có phương trình có nghiệm kép :

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có nghiệm kép y = 4.

f) Phương trình bậc hai  16 z 2   +   24 z   +   9   =   0

Có a = 16; b = 24; c = 9;  Δ   =   b 2   –   4 a c   =   24 2   –   4 . 16 . 9   =   0

Áp dụng công thức nghiệm ta có phương trình có nghiệm kép:

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có nghiệm kép Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac.

+ Nếu Δ > 0, phương trình có hai nghiệm phân biệt Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Nếu Δ = 0, phương trình có nghiệm kép Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9 ;

+ Nếu Δ < 0, phương trình vô nghiệm.

3 tháng 1 2017

a) Thay x = -1 vào VT và VP của PT ta được VT = -2 và VP = 1. Vì VT ≠ VP nên x = -1 không là nghiệm của PT đã cho.

b) Tương tự, vì VT = VP = -2 nên t = -1 là nghiệm của PT đã cho.

19 tháng 7 2021

\(x^4+y^4=3y^2+1\Leftrightarrow-y^4+3y^2+1=x^4\ge0\)

\(\Rightarrow-y^4+3y^2+1\ge0\Rightarrow\frac{3-\sqrt{13}}{2}\le y^2\le\frac{3+\sqrt{13}}{2}\)

Mà \(y\in Z\Rightarrow y^2\)là số chính phương \(\Rightarrow y^2=0;1\)

*\(y^2=0\Rightarrow x^4=1\Rightarrow x=-1;1\)

*\(y^2=1\Rightarrow x^4+1=3+1\Rightarrow x^4=3\Rightarrow x\notin Z\)

Vậy phương trình có nghiệm nguyên \(\left(-1;0\right),\left(1;0\right)\)