K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

\(A=\frac{3}{1-x}+\frac{4}{x}\ge\frac{\left(\sqrt{3}+2\right)^2}{1-x+x}=7+4\sqrt{3}\)

Dấu = xảy ra khi: \(x=\frac{2}{\sqrt{3}+2}\)

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

20 tháng 8 2016

1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)

Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)

\(\Rightarrow A\ge25\)

Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)

20 tháng 8 2016

2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)

Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)

\(\Rightarrow B\ge400\)

Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

19 tháng 8 2016

Áp dụng bđt cô si với 2 số dương 4x và 1/4x ta có: 4x+1/4x  ≥  2(1)

Đặt (4√x +3)/ (x+1) =B ; √x =t => x=t^2

ta có  : B(t^2 +1) = 4t+3

<=>Bt^2 -4t+B-3=0

Xét delta =b^2 -4ac = 16-4B(B-3)= -4B^2 +12B+16  ≥  0(*) (Để phương trình có gtnn thì pt phải có nghiệm nên delta  ≥  0)

Từ (*) => B^2 -3B-4  ≤ 0

<=> (B-4)(B+1) ≤ 0
=> -1 ≤ B ≤ 4

=>-B ≥ -4(2)

TỪ (1) và (2) => A  ≥ 2+(-4)+2016=2014

Dấu = xảy ra <=> 4x=1/4x và B=4 (tự giải tìm x , ta sẽ được x = 1/4)

3 tháng 5 2018

Xét \(B=\frac{x+1}{4\sqrt{x}+3}\Leftrightarrow16B=\frac{16x+16}{4\sqrt{x}+3}.\)\(=\frac{\left(4\sqrt{x}+3\right)\left(4\sqrt{x}-3\right)+25}{4\sqrt{x}+3}\)

\(=4\sqrt{x}-3+\frac{25}{4\sqrt{x}+3}=4\sqrt{x}+3+\frac{25}{4\sqrt{x}+3}-6\)

Áp dụng BĐT Cauchy

\(16B\ge2\sqrt{25}-6=4\Leftrightarrow B\ge\frac{1}{4}\)

\(\Rightarrow-\frac{4\sqrt{x}+3}{x+1}\ge-4\)

Áp dụng bđt Cauchy

\(\Rightarrow A\ge2\sqrt{\frac{4x.1}{4x}}-4+2016=2014\)

Vậy Min A=2014 khi x=1/4

19 tháng 8 2019

\(A=\frac{16x}{3-x}+\frac{3}{x}+1=\frac{16x}{3-x}+\frac{3-x}{x}+2\ge8+2=10\)

Dau '=' xay ra khi \(x=\frac{3}{5}\)

Vay \(A_{min}=10\)khi \(x=\frac{3}{5}\)

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)