K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

nên \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a\cdot c}{b\cdot d}=\dfrac{bk\cdot dk}{b\cdot d}=k^2\)

\(\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{\left(a-c\right)\left(a+c\right)}{\left(b-d\right)\left(b+d\right)}=\dfrac{k\left(b-d\right)\cdot k\cdot\left(b+d\right)}{\left(b-d\right)\left(b+d\right)}=k^2\)

Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2-c^2}{b^2-d^2}\)

30 tháng 7 2015

Nếu (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì \(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}\)

Theo tính chất của dãy tỉ số bằng nhau => \(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}=\frac{\left(a+b+c+d\right)+\left(a+b-c-d\right)}{\left(a-b+c-d\right)+\left(a-b-c+d\right)}=\frac{2.\left(a+b\right)}{2.\left(a-b\right)}=\frac{a+b}{a-b}\)

và  \(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}=\frac{\left(a+b+c+d\right)-\left(a+b-c-d\right)}{\left(a-b+c-d\right)-\left(a-b-c+d\right)}=\frac{2.\left(c+d\right)}{2.\left(c-d\right)}=\frac{c+d}{c-d}\)

=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{a+b-\left(a-b\right)}{c+d-\left(c-d\right)}\)=> \(\frac{2a}{2c}=\frac{2b}{2d}\)=> \(\frac{a}{c}=\frac{b}{d}\) hay \(\frac{a}{b}=\frac{c}{d}\)

Nếu \(\frac{a}{b}=\frac{c}{d}\) . bằng cách suy ngược lại ta có : \(\frac{a+b+c+d}{a-b+c-d}=\frac{a+b-c-d}{a-b-c+d}\)

17 tháng 11 2017

Đẳng cấp nhỉ 

2 tháng 7 2016

Từ \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=>\frac{a}{a+b}=\frac{c}{c+d}\left(đpcm\right)\)

2 tháng 7 2016

a/b = c/d 

suy ra cb = ad

suy ra cb+ac =ad+ac 

suy ra c(a+b)=a(c+d)

nên a/a+b=c/c+d

29 tháng 11 2018

Câu hỏi của Hiền Hòa - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo bài làm ở link này nhé! :)

30 tháng 11 2018

em cam on co

15 tháng 8 2018

bạn ơi bạn làm dc chưa