Chứng minh rằng: C=1+5+5^2+5^3+...+5^2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. Có \(\overline{ab}+\overline{ba}=10a+b+10b+a\)
\(=\left(10a+a\right)+\left(10b+b\right)\)
\(=11a+11b\)
\(=11.\left(a+b\right)\)
Ta thấy \(11.\left(a+b\right)⋮11\)
Vậy \(\overline{ab}+\overline{ba}⋮11\left(dpcm\right)\)
a: \(5C=5+5^2+5^3+...+5^{2018}\)
\(\Leftrightarrow4C=5^{2018}-1\)
\(\Leftrightarrow C=\dfrac{5^{2018}-1}{4}\)
\(\Leftrightarrow5^x-1=\dfrac{5^{2018}-1}{4}\)
\(\Leftrightarrow5^x=\dfrac{5^{2018}+3}{4}\)(vô lý)
c: \(64^{10}-32^{11}-16^{13}\)
\(=2^{60}-2^{55}-2^{52}\)
\(=2^{52}\left(2^8-2^3-1\right)\)
\(=2^{52}\cdot247⋮̸49\)
1:\(A=1+3+3^2+3^3+...+3^{11}\)
\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)
\(A=4+3^2\cdot4+....+3^{10}\cdot4\)
\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4
Vì ta có 4 chia hết cho 4 => A có chia hết cho 4
Vậy A chia hết cho 4
2:
\(C=5+5^2+5^3+...+5^8\) chia hết cho 30
\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)
\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)
\(C=30\cdot\left(5^2+...+5^6\right)\)
Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30
Vậy C có chia hết cho 30
Ta có : \(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)+2018\)
\(=\left[\left(x-1\right)\left(x-7\right)\right]\left[\left(x-3\right)\left(x-5\right)\right]+2018\)
\(=\left(x^2-x-7x+7\right)\left(x^2-3x-5x+15\right)+2018\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)+2018\)
\(=\left(x^2-8x+11-4\right)\left(x^2-8x+11+4\right)+2018\)
\(=\left(x^2-8x+11\right)^2-16+2018\)
\(=\left(x^2-8x+11\right)^2+2002\ge2002>0\forall x\)
\(\left(đpcm\right)\)
\(C=1+5+5^2+5^3+...+5^{2018}\)
\(\Rightarrow5C=5+5^2+5^3...+5^{2019}\)
\(\Rightarrow5C-C=5^{2019-1}\)
\(\Leftrightarrow4C=5^{2019}-1\Leftrightarrow C=\dfrac{5^{2019}-1}{4}\)