K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2023

\(2x^2+y^2-2xy-8x+16=0\)

\(\Leftrightarrow\left(x^2-8x+16\right)+\left(x^2-2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x-4\right)^2+\left(x-y\right)^2=0\)

Do: \(\left\{{}\begin{matrix}\left(x-4\right)^2\ge0\\\left(x-y\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x-4\right)^2+\left(x-y\right)^2\ge0\)

Mặt khác: \(\left(x-4\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x-y=0\end{matrix}\right.\)

\(\Leftrightarrow x=y=4\)

Vậy: ... 

24 tháng 10 2023

bn giải giúp bài của mình ik ạ,c.ơn 

 

NV
12 tháng 9 2021

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4+\left(x^2-12x+36\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4+\left(x-6\right)^2=0\)

\(\Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-8\end{matrix}\right.\)

12 tháng 9 2021

\(y^2+2xy-12x+4\left(x+y\right)+2x^2+40=0\\ \Leftrightarrow\left[\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4\right]+\left(x^2-12x+36\right)=0\\ \Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)

Vì \(\left\{{}\begin{matrix}\left(x+y+2\right)^2\ge0\forall x,y\\\left(x-6\right)^2\ge0\forall x\end{matrix}\right.\) 

Nên \(\left(x+y+2\right)^2+\left(x-6\right)^2\ge0\forall x,y\)

Dấu"=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x+y+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-8\\x=6\end{matrix}\right.\)

Vậy x = 6 và y = -8

 

 

 

NV
8 tháng 1 2024

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+8\left(x-y\right)+16=3-2y^2\)

\(\Leftrightarrow\left(x-y\right)^2+8\left(x-y\right)+16=3-2y^2\)

\(\Leftrightarrow\left(x-y+4\right)^2=3-2y^2\) (1)

Do \(\left(x-y+4\right)^2\ge0;\forall x,y\)

\(\Rightarrow3-2y^2\ge0\Rightarrow y^2\le\dfrac{3}{2}\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\end{matrix}\right.\)

\(\Rightarrow y=\left\{-1;0;1\right\}\)

- Với \(y=-1\) thay vào (1):

\(\left(x+5\right)^2=1\Rightarrow\left[{}\begin{matrix}x+5=1\\x+5=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-4\\x=-6\end{matrix}\right.\)

- Với \(y=1\) thay vào (1):

\(\Rightarrow\left(x+3\right)^2=1\Rightarrow\left[{}\begin{matrix}x+3=1\\x+3=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

- Với \(y=0\)

\(\Rightarrow\left(x+4\right)^2=3\) (ko có nghiệm nguyên do 3 ko phải SCP)

23 tháng 3 2022

\(M+5x^2-xy-3y^2=8x^2-2xy-y^2\)

\(M=8x^2-2xy-y^2-5x^2+xy+2y^2\)

\(M=3x^2-xy+y^2\)

Bài 2: 

a) Ta có: \(A=\left(7x+5\right)^2+\left(3x-5\right)^2-\left(10-6x\right)\left(5+7x\right)\)

\(=\left(7x+5\right)^2+2\cdot\left(7x+5\right)\cdot\left(3x-5\right)+\left(3x-5\right)^2\)

\(=\left(7x+5+3x-5\right)^2\)

\(=\left(10x\right)^2=100x^2\)

Thay x=-2 vào A, ta được:

\(A=100\cdot\left(-2\right)^2=100\cdot4=400\)

b) Ta có: \(B=\left(2x+y\right)\left(y^2-2xy+4x^2\right)-8x\left(x-1\right)\left(x+1\right)\)

\(=8x^3+y^3-8x\left(x^2-1\right)\)

\(=8x^3+y^3-8x^3+8x\)

\(=8x+y^3\)

Thay x=-2 và y=3 vào B, ta được:

\(B=-2\cdot8+3^3=-16+27=11\)

22 tháng 7 2021

Ai help mk vs

5 tháng 8 2017

a)  ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014 

Đăngt thức xay ra khi x=y=1

a: \(\Leftrightarrow x^2-2x+1+y^2+4y+4=0\)

=>(x-1)^2+(y+2)^2=0

=>x=1 và y=-2

b: \(\Leftrightarrow2x^2+2y^2-16x+32+16y+32=0\)

\(\Leftrightarrow2\left(y-4\right)^2+2\left(x+4\right)^2=0\)

=>y=4; x=-4