K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

\(=\sqrt{3}-1-\sqrt{7-2\sqrt{7}+1}\)

\(=\sqrt{3}-1-\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(=\sqrt{3}-1-\sqrt{7}+1\)

\(=\sqrt{3}-\sqrt{7}\)

a: Ta có: \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}-\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\dfrac{8}{8+2\sqrt{15}}-\dfrac{8}{8-2\sqrt{15}}\)

\(=\dfrac{64-16\sqrt{15}-64-16\sqrt{15}}{4}\)

\(=\dfrac{-32\sqrt{15}}{4}=-8\sqrt{15}\)

b: Ta có: \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}\)

\(=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{-2}\)

\(=-\dfrac{6\sqrt{2}}{2}=-3\sqrt{2}\)

19 tháng 8 2021

b) \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}=\dfrac{6\sqrt{2}}{-2}=-3\sqrt{2}\)

c) \(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right):\sqrt{28}=\dfrac{\left(\sqrt{7}+3\right)^2-\left(\sqrt{7}-3\right)^2}{\left(\sqrt{7}-3\right)\left(\sqrt{7}+3\right)}:\sqrt{28}=\dfrac{16+6\sqrt{7}-16+6\sqrt{7}}{7-9}=\dfrac{12\sqrt{7}}{-2}=-6\sqrt{7}\)

b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)

\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)

\(=4\left(7+3\sqrt{5}\right)\)

\(=28+12\sqrt{5}\)

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

Lời giải:

a. 

$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$

$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$

$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$

$=2\sqrt{5}-5\sqrt{10}$

$\Rightarrow A=\sqrt{10}-5\sqrt{5}$

b.

$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$

$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$

$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$

$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$

$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$

$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$

$\Rightarrow B=28+12\sqrt{5}$

c.

$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$

$=(7-5)(6-\sqrt{35})$

$=2(6-\sqrt{35})=12-2\sqrt{35}$

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Câu 1,2 bạn đã đăng và có lời giải rồi

Câu 3:

\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)

25 tháng 6 2021

\(A=\left|2-\sqrt{7}\right|+7-2\sqrt{7}+1\)

\(=\sqrt{7}-2+8-2\sqrt{7}\) \(=6-\sqrt{7}\)

\(B=3\cdot1,5-4\cdot\left|3-\sqrt{2}\right|\) \(=4,5-4\left(3-\sqrt{2}\right)\)

\(=4,5-12+4\sqrt{2}\) \(=4\sqrt{2}-7,5\) 

Ta có: \(A=\sqrt{\left(2-\sqrt{7}\right)^2}+\left(\sqrt{7}-1\right)^2\)

\(=\sqrt{7}-2+8-2\sqrt{7}\)

\(=6-\sqrt{7}\)

`a, (sqrt 28 - sqrt 12 - sqrt 7) sqrt 7 + 2 sqrt 21`.

`= sqrt(28.7) - sqrt(12.7) - sqrt(7.7) + 2 sqrt 21`.

`= sqrt(4. 7.7) - sqrt (12.7) - 7 + 2 sqrt 21`.

`= 14 - sqrt(4.3.7) - 7 + 2 sqrt 21`.

`= 7`.

`b, (sqrt99-sqrt18-sqrt11)sqrt11+3sqrt22`

`= sqrt(99.11)- sqrt(18.11)-sqrt(11.11) +3sqrt22`

`= sqrt(9.11.11)-sqrt(2.9.11)-11+3sqrt22`

`= 33 - 11 = 22`.

21 tháng 7 2023

Giỏi quá <3

NV
11 tháng 1 2024

\(D=a^{\dfrac{7}{2}}.a^{\dfrac{1}{3}}.a^{\dfrac{7}{4}}=a^{\dfrac{7}{2}+\dfrac{1}{3}+\dfrac{7}{4}}=a^{\dfrac{67}{12}}=\sqrt[12]{a^{67}}\)

\(D=a^{\sqrt{2}-1}.a^{2\sqrt{2}}.a^{3-3\sqrt{2}}=a^{\sqrt{2}-1+2\sqrt{2}+3-3\sqrt{3}}=a^2\)

\(D=\left(\sqrt{a}\right)^7\cdot\left(\sqrt[3]{a}\right)\left(\sqrt[4]{a}\right)^7\)

\(=a^{\dfrac{1}{2}\cdot7}\cdot a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{4}\cdot7}\)

\(=a^{\dfrac{7}{2}+\dfrac{1}{3}+\dfrac{7}{4}}=a^{\dfrac{67}{12}}\)

b: \(D=a^{\sqrt{2}-1}\cdot\left(a^2\right)^{\sqrt{2}}\cdot\left(a^3\right)^{1-\sqrt{2}}\)

\(=a^{\sqrt{2}-1}\cdot a^{2\sqrt{2}}\cdot a^{3-3\sqrt{2}}\)

\(=a^{\sqrt{2}-1+2\sqrt{2}+3-3\sqrt{2}}=a^2\)

27 tháng 6 2017

1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)

\(=7-2\sqrt{4\sqrt{7}}\)

29 tháng 5 2018

cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với