c/m bđt
a, a^4 +a^4>= a^3b +ab^3
b, a^2+ b^2>= 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3a^2+3b^2=10ab\)
\(\Rightarrow3a^2-10ab+3b^2=0\)
\(\Rightarrow3a^2-ab-9ab+3b^2=0\)
\(\Rightarrow\left(3a^2-ab\right)-\left(9ab-3b^2\right)=0\)
\(\Rightarrow a\left(3a-b\right)-3b\left(3a-b\right)=0\)
\(\Rightarrow\left(3a-b\right)\left(a-3b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3a-b=0\\a-3b=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}b=-3a\\b=\dfrac{a}{3}\end{matrix}\right.\)
Với \(b=-3a,\)có :
\(P=\dfrac{-3a-a}{-3a+a}=\dfrac{-4a}{-2a}=2\)
Với \(b=\dfrac{a}{3},\)có :
\(P=\dfrac{\dfrac{a}{3}-a}{\dfrac{a}{3}+a}=\dfrac{\dfrac{a}{3}-\dfrac{3a}{3}}{\dfrac{a}{3}+\dfrac{3a}{3}}=\dfrac{-\dfrac{2a}{3}}{\dfrac{4a}{3}}=-\dfrac{2a}{3}.\dfrac{3}{4a}=-\dfrac{1}{2}\)
( Nếu sai thì cho mk xin lỗi nha bn , tại mk ko chắc lắm )
Lời giải:
Ta có :\(\frac{a^2+9b^2}{a-3b}=\frac{a^2+9b^2-6ab+6ab}{a-3b}\)
\(=\frac{(a-3b)^2+6}{a-3b}\) (do $ab=1$)
\(=a-3b+\frac{6}{a-3b}\geq 2\sqrt{(a-3b).\frac{6}{a-3b}}=2\sqrt{6}\) (theo bđt Cauchy)
Do đó ta có đpcm
Đề hoàn toàn đúng mà: Ta có
\(\left(a^4+b^4\right)-\left(a^3b+ab^3\right)=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\). (Ở đây chú ý rằng \(a^2+ab+b^2=\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\)).
Mặt khác \(\left(a^4+b^4\right)-2a^2b^2=\left(a^2-b^2\right)^2\ge0.\)
Cộng hai bất đẳng thức lại ta có điều phải chứng minh.
a^4 +b^4 >= ab^3 +a^3 b (1)
<=> 4a^4 +4b^4 - 4ab(a^2 +b^2) >= 0
<=> [(a^2 +b^2 )^2 - 4ab(a^2 +a^2) +4a^2 b^2 ] +3a^4 +3b^4 -6a^2 b^2 >=0
<=> (a -b )^4 +3(a^4 + b^4 -2a^2 b^2 ) >= 0 (2)
cos (a-b )^4 >= 0
a^4 + b^4 >= 2a^2 b^2 (co si có thể không cần co si cũng được )
=> (2) đúng => (1) đúng => dpcm
b) a^2 +b^2 +1 >= ab +a+b (1)
<=>2a^2 +2b^2 +2 -2ab -2a-2b >=0
<=>[a^2 +b^2 -2ab ] +[a^2 -2a +1] +[b^2 -2b +1 ] >=0
<=>(a -b)^2 +(a-1)^2 + (b-1)^2 >=0 (2)
(2) đúng (1) đúng => dpcm
\(a^4+b^4\ge2a^3b+2ab^3-2a^2b^2\)
\(\Leftrightarrow\left(a^4-2a^3b+a^2b^2\right)+\left(b^4-2ab^3+a^2b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-ab\right)^2+\left(b^2-ab\right)^2\ge0\) (đúng)
\(\Rightarrow\)Điều phải chứng minh
4 + b 4 ≥ 2a 3b + 2ab 3 − 2a 2b 2
⇔ a 4 − 2a 3b + a 2b 2 + b 4 − 2ab 3 + a 2b 2 ≥ 0
⇔ a 2 − ab 2 + b 2 − ab 2 ≥ 0 (đúng)
⇒Điều phải chứng minh
chúc cậu hok tốt @_@
Thật sự á, cái đề làm t đau đầu từ sáng giờ, nhờ cmt của bạn Arima Kousei t mới làm đc!
Đề đúng là tìm min của \(M=\frac{3a^4+3b^4+c^3+2}{\left(a+b+c\right)^3}\)
Áp dụng BĐT Cô - si cho 4 số không âm, ta được:
\(3a^4+1=a^4+a^4+a^4+1\ge4\sqrt[4]{a^{12}}=4a^3\)
Tương tự ta có: \(3b^4+1\ge4b^3\)
\(\Rightarrow M=\frac{3a^4+3b^4+c^3+2}{\left(a+b+c\right)^3}\ge\frac{4a^3+4b^3+c^3}{\left(a+b+c\right)^3}\)
Ta có BĐT phụ \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)(*)
Thật vậy (*)\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)
\(\Rightarrow M\ge\frac{4a^3+4b^3+c^3}{\left(a+b+c\right)^3}\ge\frac{\left(a+b\right)^3+c^3}{\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^3}{4\left(a+b+c\right)^3}=\frac{1}{4}\)
Đẳng thức xảy ra khi a = b = 1; c = 2
P/S: Sai nữa thì chịu ,mình đã cố gắng hết sức
a) \(a^4+b^4\ge a^3b+ab^3\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\Leftrightarrow\left(a-b\right)^2\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]\ge0\)(#)
Ta có điều (#) đúng nên suy ra ta có đpcm
Câu b đề kì kì bạn ơi