(x+3)^2+(4-x)(x+4)=1 tim x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 + (-2) ≥ (-2) => A ≥ -2
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)
Vậy GTNN A = -2 khi x = 2019 và y = 1
2, Ta có: |x - 3| = |3 - x|
Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1
=> C ≥ 1 - 5 => C ≥ -4
Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0
+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)
+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)
Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3
b,
1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9
Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5
Vậy GTLN B = 9 khi x = 5 hoặc x = -5
2, Đk: x ≠ 5
\(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)
Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6
=> \(D=1+1=2\)
Vậy GTLN của D = 2 khi x = 6
a: \(\left(x+\dfrac{1}{4}\right)+\left(3x-4\right)+2\left(x-3\right)=1\)
=>\(x+\dfrac{1}{4}+3x-4+2x-6=1\)
=>\(6x-\dfrac{39}{4}=1\)
=>\(6x=1+\dfrac{39}{4}=\dfrac{43}{4}\)
=>\(x=\dfrac{43}{4}:6=\dfrac{43}{24}\)
b: \(2\left(x-3\right)=3\left(x+2\right)-x+1\)
=>\(2x-6=3x+6-x+1\)
=>2x-6=2x+7
=>-6=7(vô lý)
c: \(x\left(x+3\right)+x\left(x-2\right)=2x\left(x-1\right)\)
=>\(x^2+3x+x^2-2x=2x^2-2x\)
=>3x-2x=-2x
=>3x=0
=>x=0
d: \(\left(x-1\right)\cdot3x-2\left(x+2\right)-2x=x\left(x-1\right)\)
=>\(3x^2-3x-2x-4-2x=x^2-x\)
=>\(3x^2-7x-4-x^2+x=0\)
=>\(2x^2-6x-4=0\)
=>\(x^2-3x-2=0\)
=>\(x=\dfrac{3\pm\sqrt{17}}{2}\)
20 . 2^x + 1 = 10.4^2 + 1
20 . 2^x + 1 = 10 . 16 + 1
20 . 2^x + 1 = 161
20 . 2^x = 161 - 1
20 . 2^x = 160
2^x = 8
2^x = 2^3
=> x = 3
I3.(x+1)I - I2(2+x)I + I 1-xI =4
I3x+3I - I4+2xI + I1+xI =4
Lập bảng xét dấu:
Đến đây bạn tự lmf nhé!
`#3107.101107`
\(x(x+5)(x-5) - (x+2)(x^2-2x+4)=5\)
`<=> x(x^2 - 25) - (x^3 + 2^3) = 5`
`<=> x^3 - 25x - x^3 - 8 = 5`
`<=> -25x - 8 = 5`
`<=> -25x = 13`
`<=> x = -13/25`
Vậy, `x = -13/25`
_____
\((x+1)^3 - (x-1)^3 -6(x-1)^2 = -19\)
`<=> x^3 + 3x^2 + 3x + 1 - (x^3 - 3x^2 + 3x - 1) - 6(x^2 - 2x + 1) = -19`
`<=> x^3 + 3x^2 + 3x + 1 - x^3 + 3x^2 - 3x + 1 - 6x^2 + 12x - 6 = -19`
`<=> (x^3 - x^3) + (3x^2 + 3x^2 - 6x^2) + (3x - 3x + 12x) + (1 + 1 - 6) = -19`
`<=> 12x - 4 = -19`
`<=> 12x = -15`
`<=> x = -15/12 = -5/4`
Vậy, `x = -5/4.`
________
`@` Sử dụng các hđt:
`1)` `A^2 + B^2 = (A - B)(A + B)`
`2)` `A^3 + B^3 = (A + B)(A^2 - AB + B^2)`
`3)` `(A - B)^3 = A^3 - 3A^2B + 3AB^2 - B^3`
`4)` `(A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3`
`5)` `(A - B)^2 = A^2 - 2AB + B^2.`
a: \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=5\)
=>\(x\left(x^2-25\right)-x^3-8=5\)
=>\(x^3-25x-x^3-8=5\)
=>-25x=13
=>\(x=-\dfrac{13}{25}\)
b: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)
=>\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-19\)
=>\(6x^2+2-6x^2+12x-6=-19\)
=>12x-4=-19
=>12x=-15
=>x=-5/4
1) 4x(x-5)-(x-1)(4x-3)=5
<=>4x2-20x-4x2+3x+4x-3=5
<=>-13x=8
<=>x=-8/13
Thôi mỏi tay quá tìm x luôn nha
2) x=1.875
3) x=17/7
a) \(\frac{3}{2}x-\frac{2}{5}=\frac{1}{3}x-\frac{1}{4}\)
\(\Rightarrow\frac{3}{2}x-\frac{1}{3}x=-\frac{1}{4}+\frac{2}{5}\)
\(\frac{7}{6}x=\frac{3}{20}\Rightarrow x=\frac{9}{70}\)
b) \(-5^{\frac{1}{2}x+1}=\frac{3}{4}-\frac{7}{6}\)
\(-5^{\frac{1}{2}x}.\left(-5\right)=-\frac{5}{12}\)
\(-5^{\frac{1}{2}x}=\frac{1}{12}\)
mà -51/2x mang giá trị âm
1/12 có giá trị dương
=> không tìm được x
c) \(\frac{2x-2}{3}=\frac{7x+3}{2-1}\)
\(\frac{2x-2}{3}=7x+3=\frac{21x+9}{3}\)
=> 2x - 2 = 21x + 9
=> 2x - 21x = 9 + 2
-19x = 11
x = -11/19
phần d bn lm như phần a nha
=>x^2+6x+9+(4-x)(4+x)=1
=>x^2+6x+8+16-x^2=0
=>6x+24=0
=>x+4=0
=>x=-4
(x2+2.x3+32) + (4- x) (4+ x)=1
x2+ 6x + 9 + 16 - x2=1
6x = 1 - 9 -16
6x = -24
x =-4