(x +2) mũ 2 =4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(5x^5+5x^4\right):5x^2-\left(2x^4-8x^2-6x+12\right):\left(2x-4\right)\)
Phép chia thứ nhất:
\(\left(5x^5+5x^4\right):5x^2=x^3+x^2\)
Phép chia thứ hai:
2x^4 - 4x^3 - 2x^4 - 8x^2 - 6x + 12 - 4x^3 - 8x^2 4x^3 - 8x^2 - 6x + 12 - -6x + 12 -6x + 12 0 2x - 4 x^3 - 2x^2 - 3
Vậy A = ( x^3 + x^2 ) - ( x^3 + 2x^2 - 3 ) = -x^2 + 3
Với x = -2 thì: A = -(-2)^2 + 3 = -4 + 3 = -1
B) bạn làm tương tự nhé
Theo bài ra ta có:
\(9.x^4-x^4+2.x^4=2^5+2^9:2^2\)
\(=x^4\left(9-1+2\right)=2^5+2^7\)
\(\Rightarrow10x^4=160\)
\(\Rightarrow x^4=160\div10=16\)
\(\Rightarrow x=\pm2\)
Vậy giá trị của x = \(\pm2\)
a/
\(x^3-4x^2-\left(x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=-1\end{matrix}\right.\)
b/
\(x^5-9x=0\)
\(\Leftrightarrow x\left(x^4-9\right)=x\left(x^2-3\right)\left(x^2+3\right)=0\)
\(\Leftrightarrow x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
c/
\(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\Leftrightarrow x^4\left(x-1\right)^2-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^4-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2-2\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\pm\sqrt{2}\end{matrix}\right.\)
\(f\left(x\right)=-3x^2+x-1+x^4-x^3-x^2+3x^4+2x^3\)
\(f\left(x\right)=\left(x^4+3x^4\right)-\left(x^3-2x^3\right)-\left(3x^2+x^2\right)+x-1\)
\(f\left(x\right)=4x^4+x^3-4x^2+x-1\)
\(g\left(x\right)=x^4+x^2-x^3+x-5+5x^3-x^2-3x^4\)
\(g\left(x\right)=\left(x^4-3x^4\right)+\left(5x^3-x^3\right)+\left(x^2-x^2\right)+x-5\)
\(g\left(x\right)=-2x^4+4x^3+x-5\)
`@` `\text {Ans}`
`\downarrow`
`a,`
\(f(x) -3x^2 + x - 1 + x^4 - x^3 - x^2 + 3x^4 + 2x^3\)
`= (x^4 +3x^4) + (-x^3 +2x^3) + (-3x^2 - x^2) + x - 1`
`= 4x^4 + x^3 -4x^2 + x -1`
\(g(x) = x^4 + x^2 - x^3 + x - 5 + 5x^3 - x^2 - 3x^4\)
`= (x^4-3x^4) + (-x^3+5x^3) + (x^2 - x^2) + x -5`
`= -2x^4 + 4x^3 +x - 5`
\(\left(x+2\right)^2=4=2^2=\left(-2\right)^2\\ Vậy:x+2=2.hoặc.x+2=-2\\ Vậy:x=0.hoặc.x=-4\)
\(\left(x+2\right)^2=4\)
\(\left(x+2\right)^2=2^2\)
\(x+2=2\)
\(x=2-2\)
\(x=0\)