tìm các số tự nhiên a b c thỏa mãn 2 điều kiện 16<a<b và 20>c>b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tu 2 gia thiet suy ra 20<a<b<c<24
suy ra a=21;b=22;c=23 do a,b,c la so tu nhien
Từ giả thiết ta có : 20<a<b<c<24
Vì a,b,c là 3 số tự nhiên nên : a=21 ; b=22 ; c=23
...
Bộ 3 số tự nhiên a, b, c chỉ có \(\left\{32;33;34\right\}\) thỏa mãn yêu cầu đề bài
\(11< a< 15\)
\(\Rightarrow a=\left\{12;13;14\right\}\)
\(12< c< 15\)
\(\Rightarrow c=\left\{13;14\right\}\)
\(a< b< c\)
\(\Rightarrow a=12,b=13,c=14\)
Ta có: 11 < a < 15
=> a \(\in\left\{12;13;14\right\}\)
12 < c < 15
Mà a < b < c
=> a = 12 ; b = 13 ; c = 14
a)(x+1)+(x+2)+(x+3)+......+(x+10)=575
(x+x+x+.....+x)+(1+2+3+....+10)=575
10x+55=575
10x=575-55
10x=520
x=520:10
x=52
a) (x+1)+(x+2)+(x+3)+…+(x+10)=575
=>x+1+x+2+x+3+…+x+10=575
=>(x+x+x+…+x)+(1+2+3+…+10)=575
Từ 1 đến 10 có: (10-1):2+1=10(số)
=>x.10+10.(1+10):2=575
=>x.10+10.11:2=575
=>x.10+110:2=575
=>x.10+55=575
=>x.10=575-55
=>x.10=520
=>x=520:10
=>x=52
Vậy x=52
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
Chứng minh rằng nếu các số tự nhiên a,b,c thỏa mãn điều kiện a^2 + b^2 = c^2 thì abc chia hết cho 60
Giả sử a,b,c đều không chia hết cho 3 thì phải chia 3 dư 1
thay vào chia 3 dư 2 còn chia 3 dư 1 (loại)
Do đó a,b,c phải tồn tại một số chia hết cho 3 ,
Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5
Rồi suy ra abc chia hêt cho 3.4.5 = 60
Giả sử a,b,c đều không chia hết cho 3 thì phải chia 3 dư 1
thay vào chia 3 dư 2 còn chia 3 dư 1 (loại)
Do đó a,b,c phải tồn tại một số chia hết cho 3 ,
Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5
suy ra abc chia hêt cho 3.4.5 = 60
17,18,19
` 16<a<b`
`20>c>b`
`=>16<a<b<b<20/
`=> a= 17`
`b = 18`
`c = 19`