Cho tam giác ABC cân tại A.trên cạnh ab và ac lấy m và n sao cho am=an. cm bc+mn<2bn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBMC và ΔCNB có :
BM=CN ( AB=AC; AM=AN )
góc B = góc C ( ΔABC cân tại A )
BC : chung
suy ra : hai Δ trên bằng nhau theo trường hợp ( c-g-c )
suy ra : đpcm
b) chứng minh EBC cân nha em
Từ : ΔBMC = ΔCNB
suy ra : góc MCB = góc NBC ( 2 góc tương ứng )
suy ra : đpcm
c) ta có : ΔABC cân tại A
suy ra : góc B = góc C= \(\dfrac{180-A}{2}\) (1)
ta lại có : ΔAMN cân tại A
suy ra : góc AMN = góc ANM = \(\dfrac{180-A}{2}\) (2)
Từ (1) và (2) suy ra đpcm do (các góc ở vị trí đồng vị và bằng nhau )
A B C M N Góc A ko đc chuẩn 100 cho lắm, chịu khó nha
(*) Vì AM = AN nên ΔAMN cân tại A
=> góc AMN = ANM ( 2 góc đáy)
mà AMN + ANM = 180 - BAC => AMN = (180 - BAC) :2 (1)
Do ΔABC cân tại A nên góc ABC = ACB hay MBC = NCB
mà góc ABC + ACB = 180 - BAC => ABC = (180 - BAC ) : 2 (2)
Từ (1) và (2) suy ra AMN = ABC
do 2 góc này ở vị trí so le trong nên MN // BC → đpcm
(*) Ta có: AM + MB = AB
AN + NC = AC
mà AM = AN; AB = AC => MB = NC
Xét ΔBMC và ΔCNB có:
BM = CN (cm trên)
góc MBC = NCB (cm trên)
BC chung
=> ΔBMC = ΔCNB (c.g.c)
=> MC = NB (2 cạnh tương ứng) → đpcm
Vì AM = AN (gt) nên t/g AMN cân tại A
=> AMN = ANM
=> MAN = 180o - 2.AMN
Vì t/g ABC cân tại A nên ABC = ACB
=> BAC = 180o - 2.ABC (2)
Từ (1) và (2) => AMN = ABC
Mà AMN và ABC là 2 góc ở vị trí đồng vị nên MN // BC (1)
Xét t/g ABN và t/g ACM có:
AB = AC (gt)
A là góc chung
AN = AM (gt)
Do đó, t/g ABN = t/g ACM (c.g.c)
=> BN = CM (2 cạnh tương ứng) (2)
(1) và (2) là đpcm
A B C M N = =
a) Ta có:
AM + MB = AB
AN + NC = AC
Mà AB = AC(△ABC cân) và AM = AN (gt)
=> MB = NC
Xét △MBC và △NCB có:
MB = NC (cmt)
MBC = NCB (△ABC cân)
BC: chung
=> △MBC = △NCB (c.g.c)
=> BN = CM (2 cạnh tương ứng)
b) Vì △MBC = △NCB
=> MCB = NBC (2 góc tương ứng)
=> △BOC cân
c) Vì AM = AN (gt)
=> △AMN cân tại A
=> AMN = \(\frac{180^o-A}{2}\)(1)
Vì △ABC cân tại A
=> ABC = \(\frac{180^o-A}{2}\)(2)
Từ (1) và (2) => AMN = ABC
Mà hai góc AMN và ABC ở vị trí đồng vị
=> MN // BC
a, ta có BN VÀ CN THEO THỨ TỰ PHÂN GIÁC CỦA GÓC B VÀ GÓC C (GT)
NEN B1=B2=1/2B VÀ C1=C2=1/2 C MÀ GÓC B = GÓC C
(2 GÓC Ở ĐÁY CỦA TAM GIÁC CÂN ABC) =>GÓC B2 =GỐC C2
XÉT TAM GIÁC ABD VÀ TAM GIÁC ACE CO
GÓC A CHUNG (GT)
GÓC B2 = GÓC C2
CANH AB=AC(GT
VẬY TAM GIÁC ABE=TAM GIÁC ACE (GCG) =>AD=AE
=> TAM GIÁC AMN CÂN TẠI A