cho x,y>0 và x+y=2a .tìm giá trị nhỏ nhất của A=1/x+1/y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{xy}\le\frac{x+y}{2}=\frac{2a}{2}=a\Rightarrow xy\le a^2\)
Ta có : \(A=\frac{x+y}{xy}\ge\frac{2a}{a^2}=\frac{a}{2}\)
Dấu "=" xảy ra khi x = y = a
vậy ....
Vì x>0; y>0
Nên áp dụng BĐT Cô-si ta có: \(x+y\ge2\sqrt{xy}\)
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{x}.\frac{1}{y}}=2\sqrt{\frac{1}{xy}}\)
Mà \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
Nên \(\frac{1}{2}\ge2.\frac{1}{\sqrt{xy}}\Rightarrow\frac{1}{4}\ge\frac{1}{\sqrt{xy}}\)
\(\Rightarrow4\le\sqrt{xy}\) (C)
Ta có: \(\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}\)
Thế (C) vào ta được: \(\sqrt{x}+\sqrt{y}\ge2\sqrt{4}=4\)
Dấu "=" xảy ra <=> x = y
Vậy AMin = 4 khi và chỉ khi x = y
\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow\frac{1}{2}>=\frac{4}{x+y}\Rightarrow x+y>=8\left(1\right)\)(bđt svacxo)
\(\frac{1}{x}+\frac{1}{y}>=2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}=\frac{2}{\sqrt{xy}}\Rightarrow\frac{1}{2}>=\frac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}>=4\Rightarrow2\sqrt{xy}>=8\left(2\right)\)(bđt cosi)
từ \(\left(1\right);\left(2\right)\Rightarrow x+2\sqrt{xy}+y>=8+8=16\Rightarrow\left(\sqrt{x}+\sqrt{y}\right)^2>=16\)
mà \(\sqrt{x}>0;\sqrt{y}>0\Rightarrow\sqrt{x}+\sqrt{y}>=4\)
dấu = xảy ra khi x=y=4
vậy min A là 4 khi x=y=4
Áp dụng bđt Cô-si \(1=x^2+y^2\ge2xy\)
\(\Rightarrow xy\le\frac{1}{2}\)
Ta có \(A=\frac{-2xy}{1+xy}\ge\frac{-\frac{2.1}{2}}{1+\frac{1}{2}}=-\frac{2}{3}\)
\("="\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
với x;y>=0 ta có:
\(A^2=\left(\sqrt{2x+1}+\sqrt{2y+1}\right)^2=2x+1+2y+1+2\sqrt{\left(2x+1\right)\left(2y+1\right)}\)
\(=2\left(x+y\right)+2+\sqrt{4xy+2x+2y+1}=2\left(x+y\right)+2+\sqrt{4xy+2\left(x+y\right)+1}\)
\(2=2\left(x^2+y^2\right)=\left(1+1\right)\left(x^2+y^2\right)>=\left(x+y\right)^2\Rightarrow x+y< =\sqrt{2}\)(bđt bunhiacopxki)
\(2xy< =x^2+y^2=1\Rightarrow2\cdot2xy=4xy< =2\cdot1=2\)
\(\Rightarrow A^2=2\left(x+y\right)+2+2\sqrt{4xy+2\left(x+y\right)+1}< =2\sqrt{2}+2+2\sqrt{2+2\sqrt{2}+1}\)
\(=2\sqrt{2}+2+2\sqrt{\left(\sqrt{2}+1\right)^2}=2\sqrt{2}+2+2\left(\sqrt{2}+1\right)4\sqrt{2}+4\)
\(\Rightarrow A< =\sqrt{4\sqrt{2}+4}\)
dấu = xảy ra khi x=y=\(\sqrt{\frac{1}{2}}\)
vậy max A là \(\sqrt{4\sqrt{2}+4}\)khi \(x=y=\sqrt{\frac{1}{2}}\)
\(A=2+x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}=2+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)
Áp dụng cô-si cho từng cặp là ok,,,,
Riêng cặp cuối \(x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\Leftrightarrow-\left(x+y\right)\ge-\sqrt{2}\)
Theo bất đẳng thức cosi \(\frac{1}{x}\)+ \(\frac{1}{y}\)\(\ge\)2\(\sqrt{\frac{1}{x}\times\frac{1}{y}}\)= \(\frac{2}{\sqrt{xy}}\)\(\ge\)\(\frac{2}{\frac{x+y}{2}}\)= \(\frac{4}{x+y}\)
Mà theo đầu bài ta có x + y = 2a
=> Min a = \(\frac{4}{x+y}\)= \(\frac{4}{2a}\)= \(\frac{2}{a}\)
Áp dụng BĐT Bunhiacopxki
\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\sqrt{\frac{1}{x}}\right)^2+\left(\sqrt{\frac{1}{y}}\right)^2\right]\ge\left(\sqrt{x}.\frac{1}{\sqrt{x}}+\sqrt{y}.\frac{1}{\sqrt{y}}\right)^2=4\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge4:\left(x+y\right)=\frac{4}{2a}=\frac{2}{a}\)
Vậy