\(C=\frac{3x+8}{x-1}\)
\(D=\frac{2x-3}{x-1}\)
\(E=\frac{5x+9}{x+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x-7}{5}=\frac{2x-1}{3}\)
\(\Leftrightarrow9x-21=10x-5\)
\(\Leftrightarrow-x=16\Leftrightarrow x=-16\)
\(\frac{4x-7}{12}-x=\frac{3x}{8}\)
\(\Leftrightarrow\frac{4x-7-12x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow\frac{-7-8x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow-56-64x=36x\)
\(\Leftrightarrow-56=100x\Leftrightarrow x=\frac{-14}{25}\)
\(\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)=0\)
Vì \(\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)\ne0\)nên x - 2019 = 0
Vậy x = 2019
\(\frac{5x-8}{3}=\frac{1-3x}{2}\)
\(\Leftrightarrow10x-16=3-9x\)
\(\Leftrightarrow19x=19\Leftrightarrow x=1\)
f)
$\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{(2-3x)^3}$
$=\frac{2x-3x^2}{x^2-1}.\frac{x^4-1}{(2-3x)^3}=\frac{x(2-3x)(x^2-1)(x^2+1)}{(x^2-1)(2-3x)^3}$
$=\frac{x(x^2+1)}{(2-3x)^2}$
g)
$\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}=\frac{5xy}{2x-3}.\frac{12-8x}{15xy^3}$
$=\frac{5xy}{2x-3}.\frac{-4(2x-3)}{15xy^3}=\frac{-4}{3y^2}$
h)
$\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}=\frac{x(x+2)}{3(x-1)^2}:\frac{2(x+2)}{5(x-1)}$
$=\frac{x(x+2)}{3(x-1)^2}.\frac{5(x-1)}{2(x+2)}$
$=\frac{5x}{6(x-1)}$
d)
$\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}=\frac{x+8}{(x-4)(x+4)}-\frac{2}{x(x+4)}$
$=\frac{x(x+8)}{x(x-4)(x+4)}-\frac{2(x-4)}{x(x+4)(x-4)}$
$=\frac{x^2+8x-2(x-4)}{x(x+4)(x-4)}=\frac{x^2+6x+8}{x(x+4)(x-4)}$
$=\frac{(x+2)(x+4)}{x(x+4)(x-4)}=\frac{x+2}{x(x-4)}$
e)
$\frac{x^2-49}{2x+1}.\frac{3}{7-x}=\frac{(x-7)(x+7)}{2x+1}.\frac{-3}{x-7}$
$=\frac{-3(x+7)}{2x+1}$
a) (2x - 1)(3x + 5) - 2(-4x + 1)2 = 6x2 + 10x - 3x - 5 - 2(16x2 - 8x + 1) = 6x2 - 3x - 5 - 32x2 + 16x - 2 = -26x2 + 13x - 7
b) \(\frac{x^2-16}{4x-x^2}=\frac{\left(x-4\right)\left(x+4\right)}{-x\left(x-4\right)}=-\frac{x+4}{x}\)
c) \(\frac{2x-9}{x^2-5x+6}+\frac{2x+1}{x-3}+\frac{x+3}{2-x}\)
= \(\frac{2x-9}{x^2-2x-3x+6}+\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{2x-9+2x^2-3x-2-x^2+9}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{x^2-2x+x-2}{\left(x-3\right)\left(x-2\right)}\)
= \(\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}=\frac{x+1}{x-3}\)
d) (x - 1)3 - (x + 1)3 + 6(x + 1)(x - 1)
= (x - 1 - x - 1)[(x - 1)2 + (x - 1)(x + 1) + (x + 1)2] + 6(x2 - 1)
= -2(x2 - 2x + 1 + x2 - 1 + x2 + 2x + 1) + 6x2 - 6
= -2(3x2 + 1) + 6x2 - 6
= -6x2 - 2 + 6x2 - 6
= -8
e) (2x + 7)2 - (4x + 14)(2x - 8) + (8 - 2x)2
= (2x + 7)2 - 2(2x + 7)(2x - 8) + (2x - 8)2
= (2x + 7 - 2x + 8)2
= 152 = 225
Để C nguyên thì : 3x + 8 chia hết cho x - 1
<=> 3x - 3 + 11 chia hết cho x - 1
<=> 3(x - 1) + 11 chia hết cho x - 1
<=> 11 chia hết cho x - 1
=> x - 1 thuộc Ư(11) = {-11;-1;1;11}
Ta có bảng :
ta có : C = 3x + 8/x - 1 = 3x - 3 + 11/x - 1 = 3(x - 1) + 11/x - 1 = 3 + 11/x + 1
để C nguyên thì : 11 chia hết cho x - 1
=> x - 1 thuộc Ư(11) = {-11;-1;1;11}
ta có bảng :