K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(AH=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)

BC=AB^2/BH=12cm

\(AC=\sqrt{12^2-6^2}=6\sqrt{3}\left(cm\right)\)

CH=BC-BH=9cm

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

17 tháng 9 2021

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}CH=\dfrac{AH^2}{BH}=\dfrac{36}{4,5}=8\left(cm\right)\\AB=\sqrt{4,5\left(4,5+8\right)}=\sqrt{4,5\cdot12,5}=7,5\left(cm\right)\\AC=\sqrt{8\cdot12,5}=10\left(cm\right)\end{matrix}\right.\)

và \(BC=12,5\left(cm\right)\)

\(b,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{36}{3}=12\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{BC^2-AB^2}{12}=\dfrac{6\sqrt{3}}{12}=\dfrac{\sqrt{3}}{2}\left(cm\right)\\AH=3\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)

15 tháng 7 2021

bạn tham khảo ở đây,mình vừa mới làm luôn

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-duong-cao-ah-biet-ab6cm-bh3-cm-tinh-ahbchc.1230862563534

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AH^2=6^2-3^2=27\)

hay \(AH=3\sqrt{3}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow CH=\dfrac{AH^2}{HB}=\dfrac{\left(3\sqrt{3}\right)^2}{3}=9\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow AC^2=\left(3\sqrt{3}\right)^2+9^2=108\)

hay \(AC=6\sqrt{3}\left(cm\right)\)

21 tháng 6 2021

Xét tam giác ABH vuông tại H, ta có:

AH2 + BH2 = AB2

=> AH2 = 62 - 32 

=> AH = \(3\sqrt{3}\) (cm)

Có \(\widehat{BAH}=\widehat{BCA}\) (cùng phụ \(\widehat{HAC}\))

Xét \(\Delta CAH\) và \(\Delta ABH\) có:

+  \(\widehat{BCA}=\widehat{BAH}\) 

+ \(\widehat{AHC}=\widehat{BAC}\left(=90^o\right)\)

=>  \(\Delta CAH\) \(\sim\) \(\Delta ABH\) (g-g)

=> \(\dfrac{AC}{AH}=\dfrac{AB}{BH}\) => AC = \(6\sqrt{3}\) (cm)

Xét tam giác ABC vuông tại A có AH là đường cao

=> AB2 = BH.BC

=> 62 = 3.BC

=> BC = 12 (cm)

=> CH = 9 (cm)

 

5 tháng 9 2021

ủa đáng ra mình phải lấy 3- 62 chứ ạ:))

17 tháng 12 2018

Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

24 tháng 7 2018

A B C H

a)  ÁP dụng Pytago ta có:    AH2 + HB2 = AB2

                                       =>  AB2 = 62 + 4,52 =56,25

                                       =>  AB = 7,5

Áp dụng hệ thức lượng ta có:  AB2 = BH.BC

                                       =>  \(BC=\frac{AB^2}{BH}=12,5\)

=>   \(HC=BC-BH=12,5-4,5=8\)

Áp dụng hệ thức lượng ta có:

             \(AC^2=HC.BC\)

 =>   \(AC=\sqrt{HC.BC}=10\)

24 tháng 7 2018

b)  Áp dụng Pytago ta có:       AB2 = BH2 + AH2

                                          =>   AH2 = AB2 - BH2 = 27

                                          =>    \(AH=3\sqrt{3}\)

Áp dụng hệ thức lượng ta có:

     \(AH^2=BH.HC\)

=>  \(HC=\frac{AB^2}{BH}=12\)

=>  BC = HC + BH = 15

Áp dụng hệ thức lượng ta có:

       AC2 = HC.BC

=>  \(AC=\sqrt{HC.BC}=6\sqrt{5}\)

              

Bài 5: 

a) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\cot\widehat{C}\)

\(=21\cdot\cot40^0\)

\(\simeq25,03\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)

hay \(BC\simeq32,67\left(cm\right)\)