So sánh:
√17 + √10 và 7
giải giúp với ạ:(((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7 = 3 + 4 = √9 + √16
Do 10 > 9 nên √10 > √9
17 > 16 nên √17 > √16
⇒ √10 + √17 > √9 + √16
Vậy √10 + √17 > 7
--------
(1/8)²³ = 1/(2³)²³ = 1/2⁶⁹
(1/32)¹⁶ = 1/(2⁵)¹⁶ = 1/2⁸⁰
Do 69 < 80 nên 2⁶⁹ < 2⁸⁰
⇒ 1/2⁶⁹ > 1/2⁸⁰
Vậy (1/8)²³ > (1/³²)¹⁶
--------
5 = √25
Do 27 > 25 nên √27 > √25
Vậy √27 > 5
a, 8^5=8192;3.4^7=3.16384=49152
=>8^5<3.4^7
b,cái nè dài quá nên chị viết ngắn gọn thôi ha!^.^
31^11>17^14
c,5^333<3^555
a, \(\sqrt{15}+\sqrt{8}< \sqrt{16}+\sqrt{9}=4+3=7\)
\(\Rightarrow\sqrt{15}+\sqrt{8}< 7\)
b, \(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1=3+4+1=8\)
\(\sqrt{61}< \sqrt{64}=8\)
\(\Rightarrow\sqrt{10}+\sqrt{17}+1>\sqrt{61}\)
c, \(\sqrt{10}+\sqrt{5}+1>\sqrt{9}+\sqrt{4}+1=3+2+1=6\)
\(\sqrt{35}< \sqrt{36}=6\)
\(\Rightarrow\sqrt{10}+\sqrt{5}+1>\sqrt{35}\)
\(5^{11}và7^7=\left(5.7\right)^4và\left(7.5\right)^2=35^4>35^2\)
17 / 4 và 39/10
ta sẽ thấy 17/4 ... 17/10
dấu >
tiếp theo ta so sánh
ta sẽ thấy 39 / 4 và 39/10
ta điền dấu >
LƯU Ý : MUỐN TÌM PHÂN SỐ TRUNG GIAN TA LẤY TỬ SỐ CỦA PHÂN SỐ THỨ NHẤT GHÉP VỚI MẪU SỐ CỦA PHÂN SỐ THỨ HAI .
\(8^2=64=32+2\sqrt{16^2}\)
\(\left(\sqrt{15}+\sqrt{17}\right)^2=32+2\sqrt{15.17}=32+2\sqrt{\left(16-1\right)\left(16+1\right)}\)
\(=32+2\sqrt{16^2-1}\)
\(< =>8^2>\left(\sqrt{15}+\sqrt{17}\right)^2\)
\(8>\sqrt{15}+\sqrt{17}\)
\(\left(\sqrt{2019}+\sqrt{2021}\right)^2=4040+2\sqrt{2019.2021}\)
\(=4040+2\sqrt{\left(2020-1\right)\left(2020+1\right)}=4040+2\sqrt{2020^2-1}\)
\(\left(2\sqrt{2020}\right)^2=8080=4040+2\sqrt{2020^2}\)
\(< =>\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)
mik chọn điền
<
mik lười chép ại đề bài
\(A=\dfrac{7^5}{7+7^2+7^3+7^4}=\dfrac{7^5}{\left(7+7^4\right)+\left(7^2+7^3\right)}=\dfrac{7^5}{7^5+7^5}=7^5\)
\(B=\dfrac{5^5}{5+5^2+5^3+5^4}=\dfrac{5^5}{\left(5+5^4\right)+\left(5^2+5^3\right)}=\dfrac{5^5}{5^5+5^5}=5^5\)
Vì 7 > 5 nên \(7^5>5^5\)
Vậy A > B
(Nhớ cho mik một tick nha cảm ơn bạn nhìu :3)
Lời giải:
$\sqrt{17}+\sqrt{10}> \sqrt{16}+\sqrt{9}=4+3=7$
\(\sqrt[]{17}+\sqrt[]{10}\Rightarrow\left(\sqrt[]{17}+\sqrt[]{10}\right)^2=17+10+2\sqrt[]{70}=27+2\sqrt[]{70}< 27+2\sqrt[]{100}=47\)
mà \(7^2=49>47\)
\(\Rightarrow\sqrt[]{17}+\sqrt[]{10}< 7\)