dùng các kiến thức đã học, chứng tỏ
a, A=88+220 chia hết cho 17
b, B=13!-11! chia hết cho 55
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(G=8^8+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)⋮15\)
c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)
\(E=1+3+3^2+3^3+...+3^{1991}\)
\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)
\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
Có : ( 16a + 17b ) ( 17a + 16b ) : 11 ( vì 11 là số nguyên tố )
= 16a + 17b : 11
17a + 16b : 11
=G/s 16a + 17b : 11(1)
Mà ( 16a + 17b ) + ( 17a + 16b ) = ( 33a + 33b ) = 11 ( 3a + 3b ) : 11
= 17a + 16b : 11(2)
Từ ( 1 ) , ( 2 ) = ( 16a + 17b ) ( 17a +16b ) : 121
Ta có: \(\left(16a+17b\right)\left(17a+16b\right)⋮11\)
\(\Rightarrow\orbr{\begin{cases}16a+17b⋮11\\17a+16b⋮11\end{cases}}\)
Giả sử \(16a+17b⋮11\)
\(\Rightarrow16a+17b+17a+16b=\left(16a+17a\right)+\left(17b+16b\right)=33a+33b=33\left(a+b\right)\)
Vì \(33⋮11\) nên \(33\left(a+b\right)⋮11\)
Mà \(16a+17b⋮11\)
\(\Rightarrow17a+16b⋮11\)
Lại có: 11 là số nguyên tố
\(\Rightarrow\left(16a+17b\right)\left(17a+16b\right)⋮11^2=121\)
Vậy \(\left(16a+17b\right)\left(17a+16b\right)⋮121\).
Cách làm tương tự: Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath
a) A=88+220 = (23)8 + 220 = 224 + 2^20 = 220(24+1) = (220. 17) chia hết cho 17 => A=88+220 chia hết cho 17
a, Ta có: \(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{20}.2^4+2^{20}=2^{20}\left(2^4+1\right)=2^{20}.17\)
\(\Rightarrow8^8+2^{20}⋮17\)
b, Vì 13! có 2 thừa số 5 và 11 nên \(13!⋮5\)(1)
11! cũng có 2 thừa số là 5 và 11 nên \(11!⋮5\)(2)
Từ (1), (2) \(\Rightarrow13!-11!⋮55\)