\(B=\frac{2}{x-1}.\sqrt{\frac{x^2-2x+1}{4x^2},voi}0< x< 1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=2\sqrt{3^2.3}-6\frac{\sqrt{2^2.3}}{3}+\frac{3}{5}\sqrt{5^2.3}\)
\(M=6\sqrt{3}-4\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)
\(P=\frac{2}{x-1}\sqrt{\frac{\left(x-1\right)^2}{\left(2x\right)^2}}=\frac{2}{x-1}.\frac{\left|x-1\right|}{2x}=\frac{-2\left(x-1\right)}{\left(x-1\right).2x}=-\frac{1}{x}\)
Anh hai nhanh tay hơn em nghĩ đó. Em làm xong rùi, chụp ảnh đang định gửi lên thì thấy tên anh đập ngay vào mắt. Haiz, thất vọng não nề!!
\(E=\frac{2}{x-1}\sqrt{\frac{x^2-2x+1}{4x^2}}\)
\(E=\frac{2}{x-1}\cdot\frac{\sqrt{\left(x-1\right)^2}}{\sqrt{\left(2x\right)^2}}\)
\(E=\frac{2}{x-1}\cdot\frac{-\left(x-1\right)}{2x}\)
\(E=\frac{-1}{x}\)
_________
\(G=\frac{x-16}{\sqrt{x-7}-3}\)
\(G=\frac{\left(\sqrt{x-7}-3\right)\left(\sqrt{x-7}+3\right)}{\sqrt{x-7}-3}\)
\(G=\sqrt{x-7}+3\)
a)\(\)https://www.cymath.com/answer?q=2sqrt(27)-6sqrt(4%2F3)%2B3%2F5sqrt(75)
\(M=2\sqrt{27}-6\sqrt{\frac{4}{3}}+\frac{3}{5}\sqrt{75}=2\sqrt{3^2.3}-6\sqrt{\frac{2^2.3}{3^2}}+\frac{3}{5}\sqrt{5^2.3}=.\)
\(=6\sqrt{3}-4\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)
\(P=\frac{2}{x-1}\sqrt{\frac{x^2-2x+1}{4x^2}}.Với...0< x< 1\Leftrightarrow\) \(P=\frac{2}{x-1}\sqrt{\frac{\left(x-1\right)^2}{\left(2x\right)^2}}=\frac{2}{(x-1)}.\frac{\left(1-x\right)}{2x}=\frac{-1}{x}.\)
Bạn vt đề bài rõ ra nhé, mk RG trc rùi phần câu hỏi xem sau( P là j z?)
\(=\frac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}-2\)
\(=x-\sqrt{x}-3\)
a/ \(A=6\sqrt{2}-5\sqrt{2}-\sqrt{2}+1=1\)
b/ \(B=\frac{2}{x-1}.\sqrt{\frac{\left(x-1\right)^2}{\left(2x\right)^2}}=\frac{2}{x-1}.\frac{1-x}{2x}=-\frac{1}{x}\)
c/ Để 2A+B=0
\(\Leftrightarrow2-\frac{1}{x}=0\Leftrightarrow2=\frac{1}{x}\Leftrightarrow x=\frac{1}{2}\)
\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{x^2-2x+1}{2}\)
a)
Đkxđ:\(\left\{{}\begin{matrix}x-1\ne0\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge0\end{matrix}\right.\)
\(=\)\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\frac{x\sqrt{x}+2x+\sqrt{x}-2x-4\sqrt{x}-2-x\sqrt{x}+\sqrt{x}-2x+2}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}-2x}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}\left(1+\sqrt{x}\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}\left(x-1\right)}{2\left(\sqrt{x}+1\right)}=\frac{-2\sqrt{x}\left(x-1\right)}{2\sqrt{x}+2}\)
\(B=\frac{2}{x-1}.\sqrt{\frac{x^2-2x+1}{4x^2}}\)
\(=\frac{2}{x-1}.\sqrt{\frac{\left(x-1\right)^2}{4x^2}}=\frac{2}{x-1}.\frac{1-x}{2x}=-\frac{1}{x}\)