186. Cho \(A=\left(-3x^5y^3\right)^4\)
\(B=\left(2x^2z^4\right)^5\)
Tìm x,y,z biết A+B=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A=\(\left(-3x^5y^3\right)^4\ge0\forall x,y\)
B=\(\left(2x^2z^4\right)^5=\left(2xz^2\right)^{10}\ge0\forall x,z\)
Mà A+B = 0
\(\Rightarrow\left\{{}\begin{matrix}A=0\\B=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x^5y^3\\2xz^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\z=0\end{matrix}\right.\end{matrix}\right.\)
Vậy x =0 ; y = 0 ; z = 0 là các giá trị cần tìm
Câu a nhìn là bt mà
Còn câu b chưa học nên ko giúp đc, xin lỗi nhá
a) (x - 3)x - (x - 3)x + 2 = 0
(x - 3)x - (x - 3)x . (x - 3)2 = 0
(x - 3)x.(1 - (x - 3)2) = 0
=> (x - 3)x = 0 hoặc 1 - (x - 3)x = 0
=> x - 3 = 0 hoặc (x - 3)x = 1
=> x = 3
Thay x = 3 ở trường hợp 1 vào trường hợp 2
=. x - 3 = 1
=> x = 4
\(A+B=\left(-3x^5y^3\right)^4+\left(2x^2z^4\right)^5=81x^{20}y^{12}+32x^{10}z^{20}\)
Ta thấy \(81x^{20}y^{12}\ge0;32x^{10}z^{20}\ge0\) => \(81x^{20}y^{12}+32x^{10}z^{20}\ge0\)
Mà A + B = 0 \(\Rightarrow\hept{\begin{cases}x^{20}y^{12}=0\\x^{10}z^{20}=0\end{cases}}\)=> x = 0 ; y và z bất kỳ hoặc y = z = 0 ; x bất kỳ