Cho tam giác ABC vuông tại A, BD là phân giác góc B, AD=4, BD=\(4\sqrt{10}\)Tính diện tích ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow AB^2=BD^2-AD^2=\left(4\sqrt{10}\right)^2-4^2=144\)
hay AB=12(cm)
Xét ΔABD vuông tại A có
\(\tan\widehat{ABD}=\dfrac{AD}{AB}=\dfrac{4}{12}=\dfrac{1}{3}\)
hay \(\widehat{ABD}\simeq18^026'\)
mà \(\widehat{ABC}=2\cdot\widehat{ABD}\)(BD là tia phân giác của \(\widehat{ABC}\))
nên \(\widehat{ABC}\simeq36^052'\)
Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan\widehat{ABC}\)
\(\Leftrightarrow AC=12\cdot\tan36^052'\simeq9\)(cm)
Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{12\cdot9}{2}=\dfrac{108}{2}=54\left(cm^2\right)\)
a: DM là phan giác
=>BM/MA=BD/DA
=>5/MA=10/6=5/3
=>MA=3cm
b: ΔBDC có DN là phân giác
nên BN/NC=BD/DC
=>BN/NC=BM/MA
=>MN//AC
b: Xét ΔACB vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\left(1\right)\)
Xét ΔABK vuông tại A có AK là đường cao
nên \(AB^2=BK\cdot BD\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BD\)
a: Xét ΔABH có BI là phân giác
nên \(\dfrac{AI}{AB}=\dfrac{IH}{BH}\)
Xét ΔABC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)
Đề bài này chưa đủ dữ kiện để tính cụ thể AI/AB; AD/AB nha bạn
b: ΔBAD vuông tại A
=>\(\widehat{ABD}+\widehat{ADB}=90^0\)
=>\(\widehat{ADI}+\dfrac{1}{2}\cdot\widehat{ABC}=90^0\left(1\right)\)
ΔBIH vuông tại H
=>\(\widehat{HBI}+\widehat{BIH}=90^0\)
=>\(\widehat{BIH}+\dfrac{1}{2}\cdot\widehat{ABC}=90^0\)(2)
Từ (1) và (2) suy ra \(\widehat{ADI}=\widehat{BIH}\)
mà \(\widehat{AID}=\widehat{BIH}\)(hai góc đối đỉnh)
nên \(\widehat{ADI}=\widehat{AID}\)
=>ΔAID cân tại A
=>AD=AI(3)
Xét ΔABH có BI là phân giác
nên \(\dfrac{IH}{BH}=\dfrac{AI}{AB}\left(4\right)\)
Xét ΔABC có BD là phân giác
nên \(\dfrac{DC}{BC}=\dfrac{DA}{AB}\left(5\right)\)
Từ (3),(4),(5) suy ra \(\dfrac{IH}{BH}=\dfrac{DC}{BC}\)
Theo t/c đường phân giác: AD/AB = ID/IB = 1/2 --> ID = 1/2AB
Mà AD² + AB² = BD² = 15².5 hay 1/4AB² + AB² = 15².5 --> AB = 30 --> AD = 15
Lại theo t/c đường phân giác: AD/DC = AB/BC --> DC/BC = AD/AB = 1/2
--> BC = 2DC
Theo đ/l Pytago AB² + AC² = BC² hay 30² + (DC + 15)² = 4DC²
<=> DC² - 10DC - 375= 0 --> DC = 25 (loại nghiệm -15)
--> AC = AD + DC = 15 + 25 = 40
--> S(ABC) = 1/2AB.AC = 35 cm²
Đọc dòng đầu thấy sai sai bạn ạ
AD/AB=ID/IB=1/2 =>ID=1/2 IB chứ ko phải AB
Đặt \(CD=x,BC=y\left(x,y>0\right)\)
Ta có \(AB=\sqrt{BD^2-AD^2}=12\)
Ta có hệ phương trình: \(\hept{\begin{cases}\frac{x}{y}=\frac{AD}{AB}=\frac{4}{12}=\frac{1}{3}\\12^2+\left(4+x\right)^2=y^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3x\\144+\left(4+x\right)^2=\left(3x\right)^2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x\\x=5\left(h\right)x=-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=5\\y=15\end{cases}}\)(Vì \(x,y>0\))
Vậy \(S_{ABC}=\frac{AB.\left(AD+CD\right)}{2}=\frac{12.\left(4+5\right)}{2}=54.\)