Thực hiện phép nhân:
a) \(\left( {2x + y} \right)\left( {4{x^2} - 2xy + {y^2}} \right)\);
b) \(\left( {{x^2}{y^2} - 3} \right)\left( {3 + {x^2}{y^2}} \right)\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, (x-y)(x-5y)`
`= x^2 - xy - 5xy + 5y^2`
`= x^2 - 6xy + 5y^2`
`b, (2x+y)(4x^2 -2xy + y^2)`
`= (2x)^3 + y^3`
`= 8x^3 + y^3`
a) \(\left(x-y\right)\left(x-5y\right)\)
\(=x^2-5xy-xy+5y^2\)
\(=x^2-6xy+5y^2\)
b) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-4x^2y+2xy^2+4x^2y-2xy^2+y^3\)
\(=8x^3+y^3\)
`a)`
`3x(2xy - 5x^2y)`
`= 3x*2xy + 3x* (-5x^2y)`
`= 6x^2y - 15x^3y`
`b)`
`2x^2y (xy - 4xy^2 + 7y)`
`= 2x^2y * xy + 2x^2y * (-4xy^2) + 2x^2y * 7y`
`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`
`c)`
`(-2/3xy^2 + 6yz^2)*(-1/2xy)`
`= (-2/3xy^2)*(-1/2xy) + 6yz^2 * (-1/2xy)`
`= 1/3x^2y^3 - 3xy^2z^2`
`a, 3x(2xy-5x^2y)`
`= 6x^2y - 15x^3y`
`b, 2x^2y(xy-4xy^2+7y)`
`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`
`c, (-2/3xy^2 + 6yz^2).(-1/2xy)`
`= 1/3x^2y^3 - 3xy^2z^2`
`a, (4-x)(4+x) = 16 - x^2`
`b, (2y+7z)(2y-7z) = 4y^2 - 49z^2`
`c, (x+2y^2)(x-2y^2)`
`= x^2 - 4y^4`
a) \(\left(-5a^4\right)\cdot\left(a^2b-ab^2\right)\)
\(=\left(-5a^4\cdot a^2b\right)-\left(-5a^4\cdot ab^2\right)\)
\(=-5a^6b+5a^5b^2\)
b) \(\left(x+2y\right)\left(xy^2-2y^3\right)\)
\(=x^2y^2-2xy^3+2xy^3-4y^4\)
\(=x^2y^2-4y^4\)
`a, (-5a^4)(a^2b - ab^2)`
`= -5(a^(4+2) . b) + 5a^(4+1) . b^2`
`= -5a^6b + 5a^5b^2`
`b, (x+2y)(xy^2-2y^3)`
`= x^2y^2 + 2xy^3 - 2xy^3 - 4y^4`
`a, (4x^3y^2 - 8x^2y + 10xy) : 2xy`
`= 2x^2y - 4x + 5`.
`b, 7x^4y^2 - 2x^2y^2 - 5x^3y^4 : 3x^2y`
`= 7/3 x^2y - 3/2y - 5/3xy^3`
1: \(4xy\left(x^2-2xy+3y^2\right)=4x^3y-8x^2y^2+12xy^3\)
2: \(\left(x^2-2\right)\left(x^4+2x^2+4\right)=x^6-8\)
a) (x2 – 2x + 3) (1212x – 5)
= 1212x3 - 5x2 - x2 +10x + 3232x – 15
= 1212x3 – 6x2 + 232232x -15
b) (x2 – 2xy + y2)(x – y)
= x3 - x2 y - 2x2 y + 2xy2 +xy2- y3
= x3 - 3x2 y + 3xy2 - y3
a) (x2 – 2x + 3) ( 1/2x – 5) = \(\dfrac{1}{2}\)x3 – 5x2 – x2 + 10x +\(\dfrac{3}{2}\)x - 15
= \(\dfrac{1}{2}\)x3 – 6x2 + \(\dfrac{23}{2}\) x – 15.
b) (x2 – 2xy + y2)( x – y) = x3 – x2y – 2x2y + xy2 – y3 = x3 – 3x2y + 3xy2 – y3
a, \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)=\(\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\) = \(\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\) =\(\dfrac{x+y}{4}\)
a. \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\)
\(=\dfrac{x+y}{4}\)
b. \(\dfrac{x+5}{2x-2}-\dfrac{4}{x^2-1}:\dfrac{2}{x+1}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{\left(x+1\right)\left(x-1\right)}:\dfrac{2}{x+1}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{2}{x-1}\)
\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{2\left(x-1\right)}\)
\(=\dfrac{x+1}{2\left(x-1\right)}\)
a)
\(\begin{array}{l}\left( {2x + y} \right)\left( {4{x^2} - 2xy + {y^2}} \right)\\ = 2x.4{x^2} - 2x.2xy + 2x.{y^2} + y.4{x^2} - y.2xy + y.{y^2}\\ = 8{x^3} - 4{x^2}y + 2x{y^2} + 4{x^2}y - 2x{y^2} + {y^3}\\ = 8{x^3} + \left( { - 4{x^2}y + 4{x^2}y} \right) + \left( {2x{y^2} - 2x{y^2}} \right) + {y^3}\\ = 8{x^3} + {y^3}\end{array}\)
b)
\(\begin{array}{l}\left( {{x^2}{y^2} - 3} \right)\left( {3 + {x^2}{y^2}} \right)\\ = {x^2}{y^2}.3 + {x^2}{y^2}.{x^2}{y^2} - 3.3 - 3.{x^2}{y^2}\\ = 3{x^2}{y^2} + {x^4}{y^4} - 9 - 3{x^2}{y^2}\\ = {x^4}{y^4} + \left( {3{x^2}{y^2} - 3{x^2}{y^2}} \right) - 9\\ = {x^4}{y^4} - 9\end{array}\)