K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

\(x^2-x-2\sqrt{16x+1}=2\)

Đk:\(x\ge-\frac{1}{16}\)

\(pt\Leftrightarrow x^2-x-2\sqrt{16x+1}-2=0\)

\(\Leftrightarrow x^2-x-20-2\sqrt{16x+1}+18=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-\left(2\sqrt{16x+1}-18\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-\frac{4\left(16x+1\right)-324}{2\sqrt{16x+1}+18}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)-\frac{64\left(x-5\right)}{2\sqrt{16x+1}+18}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4-\frac{64}{2\sqrt{16x+1}+18}\right)=0\)

Dễ thấy: \(x+4-\frac{64}{2\sqrt{16x+1}+18}< 0\forall x\ge-\frac{1}{16}\)

Nên x-5=0 suy ra x=5

26 tháng 2 2022

cho mk hỏi một chút là đây đích thực có phải lớp 1 ko ak?

NV
25 tháng 2 2020

ĐKXĐ: \(x\ne\left\{0;1\right\}\)

Đặt \(\sqrt[5]{\frac{16x}{x-1}}=t\)

\(\Rightarrow t+\frac{1}{t}=\frac{5}{2}\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt[5]{\frac{16}{x-1}}=2\\\sqrt[5]{\frac{16}{x-1}}=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{16x}{x-1}=32\\\frac{16x}{x-1}=\frac{1}{32}\end{matrix}\right.\)

\(\Rightarrow x=...\)

b: Ta có: \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)

\(\Leftrightarrow\sqrt{x^2-1}=2\)

\(\Leftrightarrow x^2-1=4\)

hay \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)

30 tháng 9 2021

a. \(x+\sqrt{x^2-4x+4}=\dfrac{1}{2}\)

<=> \(x+\sqrt{\left(x-2\right)^2}=\dfrac{1}{2}\)

<=> \(x+\left|x-2\right|=\dfrac{1}{2}\)

<=> \(\left[{}\begin{matrix}x+x-2=\dfrac{1}{2}\\x+\left[-\left(x-2\right)\right]=\dfrac{1}{2}\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}2x=\dfrac{5}{2}\\x-x+2=\dfrac{1}{2}\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\0=\dfrac{-3}{2}\left(VLí\right)\end{matrix}\right.\)

Vậy nghiệm của PT là \(S=\left\{\dfrac{5}{4}\right\}\)

b. \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)

<=> \(\sqrt{9\left(x^2-1\right)}+\sqrt{4\left(x^2-1\right)}=\sqrt{16\left(x^2-1\right)}+2\)

<=> \(3\sqrt{x^2-1}+2\sqrt{x^2-1}-4\sqrt{x^2-1}=2\)

<=> \(\left(3+2-4\right)\sqrt{x^2-1}=2\)

<=> \(\sqrt{x^2-1}=2\)

<=> x2 - 1 = 4

<=> x2 = 5

<=> x = \(\sqrt{5}\)

NV
22 tháng 7 2021

a.

\(\Leftrightarrow4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(4x^2-2x+1\right)\left(4x^2+2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2-2x+1}=a>0\\\sqrt{4x^2+2x+1}=b>0\end{matrix}\right.\) ta được:

\(2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)

\(\Leftrightarrow\left(a-\dfrac{b}{\sqrt{3}}\right)\left(2a+\sqrt{3}b\right)=0\)

\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}\)

\(\Leftrightarrow3a^2=b^2\)

\(\Leftrightarrow3\left(4x^2-2x+1\right)=4x^2+2x+1\)

\(\Leftrightarrow...\)

NV
22 tháng 7 2021

b.

\(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)

Lặp lại cách làm câu a

NV
23 tháng 10 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{2x^2+5x+2}=2\sqrt{2x^2+5x-6}\)

\(\Leftrightarrow2x^2+5x+2=4\left(2x^2+5x-6\right)\)

\(\Leftrightarrow6x^2+15x-26=0\)

b/ ĐKXĐ: ...

Đặt \(\sqrt[5]{\frac{16x}{x-1}}=a\)

\(a+\frac{1}{a}=\frac{5}{2}\Leftrightarrow a^2-\frac{5}{2}a+1=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[5]{\frac{16x}{x-1}}=2\\\sqrt[5]{\frac{16x}{x-1}}=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}16x=32\left(x-1\right)\\16x=\frac{1}{32}\left(x-1\right)\end{matrix}\right.\)

c/ĐKXĐ: ...

\(\Leftrightarrow x^2-2x-\sqrt{6x^2-12x+7}=0\)

Đặt \(\sqrt{6x^2-12x+7}=a\ge0\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

\(\frac{a^2-7}{6}-a=0\Leftrightarrow a^2-6a-7=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=7\end{matrix}\right.\) \(\Rightarrow\sqrt{6x^2-12x+7}=7\)

\(\Leftrightarrow6x^2-12x-42=0\)

NV
23 tháng 10 2019

d/ \(\Leftrightarrow x^2+x+4-\sqrt{x^2+x+4}-2=0\)

Đặt \(\sqrt{x^2+x+4}=a>0\)

\(a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+x+4}=2\Rightarrow x^2+x=0\)

e/ \(\Leftrightarrow x^2+2x+\sqrt{3x^2+6x+4}-2=0\)

Đặt \(\sqrt{3x^2+6x+4}=a>0\Rightarrow x^2+2x=\frac{a^2-4}{3}\)

\(\frac{a^2-4}{3}+a-2=0\)

\(\Leftrightarrow a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{3x^2+6x+4}=2\Rightarrow3x^2+6x=0\)

21 tháng 7 2023

\(a,\sqrt{72x}\) xác định \(\Leftrightarrow72x\ge0\Leftrightarrow x\ge0\)

\(b,\dfrac{2x+3}{\sqrt{x^2-4}}\) xác định \(\Leftrightarrow x^2-4>0\Leftrightarrow\left(x-2\right)\left(x+2\right)>0\) 

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x+2>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>-2\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< -2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)

\(c,\sqrt{\left(2x+1\right)\left(x+2\right)}\) xác định \(\Leftrightarrow\left(2x+1\right)\left(x+2\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}2x+1\ge0\\x+2\ge0\end{matrix}\right.\\\left[{}\begin{matrix}2x+1\le0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\ge-2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{1}{2}\\x\le-2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\le-2\end{matrix}\right.\)

\(d,3-\sqrt{16x^2-1}\) xác định \(\Leftrightarrow16x^2-1\ge0\Leftrightarrow\left(4x-1\right)\left(4x+1\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}4x-1\ge0\\4x+1\ge0\end{matrix}\right.\\\left[{}\begin{matrix}4x-1\le0\\4x+1\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{4}\\x\ge-\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x\le\dfrac{1}{4}\\x\le-\dfrac{1}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{4}\\x\le-\dfrac{1}{4}\end{matrix}\right.\)

\(e,\sqrt{\dfrac{3+x}{4-x}}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}3+x\ge0\\4-x>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge-3\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)