Vẽ đồ thị của mỗi hàm số sau:
a) y = 3x
b) y = 2x + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
a) \(y = {x^2} - 3x - 4\)
Đồ thị hàm số có đỉnh \(I\left( {\dfrac{3}{2}; - \dfrac{{25}}{4}} \right)\)
Trục đối xứng là \(x = \dfrac{3}{2}\)
Giao điểm của parabol với trục tung là (0;-4)
Giao điểm của parabol với trục hoành là (-1;0) và (4;0)
Điểm đối xứng với điểm (0;-4) qua trục đối xứng \(x = \frac{3}{2}\) là (3;-4)
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:
b) \(y = {x^2} + 4x + 4\)
Đồ thị hàm số có đỉnh \(I\left( { - 2;0} \right)\)
Trục đối xứng là \(x = - 2\)
Giao điểm của parabol với trục tung là (0;4)
Giao điểm của parabol với trục hoành là I(-2;0)
Điểm đối xứng với điểm (0;4) qua trục đối xứng \(x = - 2\) là (-4;4)
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:
c) \(y = - {x^2} + 2x - 2\)
Đồ thị hàm số có đỉnh \(I\left( {1; - 1} \right)\)
Trục đối xứng là \(x = 1\)
Giao điểm của parabol với trục tung là (0;-2)
Điểm đối xứng với điểm (0;-2) qua trục đối xứng \(x = 1\) là (2;-2)
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:
2:
a: Thay x=0 và y=-3 vào (d), ta được:
3*0+b=-3
=>b=-3
b: Thay x=-4 và y=0 vào (d), ta được:
3*(-4)+b=0
=>b=12
c: Thay x=-1 và y=2 vào (d), ta được:
3*(-1)+b=2
=>b-3=2
=>b=5
a) Đồ thị hàm số có đỉnh \(I\left( {2; - 7} \right)\)
Trục đối xứng là x=2
Giao điểm của parabol với trục tung là (0;-3)
Điểm đối xứng với điểm (0;-3) qua trục đối xứng x=2 là (4;-3)
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:
b) Đồ thị hàm số có đỉnh \(I\left( { - 1;0} \right)\)
Trục đối xứng là x=-1
Giao điểm của parabol với trục tung là (0;1)
Giao điểm của parabol với trục hoành là (-1;0)
Điểm đối xứng với điểm (0;1) qua trục đối xứng x=-1 là (-2;1)
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:
c) Đồ thị hàm số có đỉnh \(I\left( {0; - 2} \right)\)
Trục đối xứng là x=0
Giao điểm của parabol với trục tung là (0;-2)
Cho x=1=>y=-3
=> Điểm A(1;-3) thuộc đồ thị.
Điểm đối xứng với A qua trục đối xứng x=0 là điểm B(-1;-3).
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:
a) \(y = 5x + 2\);
Cho \(x = 0 \Rightarrow y = 2\) ta được điểm \(A\left( {0;2} \right)\) trên trục \(Oy\).
Cho \(y = 0 \Rightarrow x = \dfrac{{ - 2}}{5}\) ta được điểm \(B\left( {\dfrac{{ - 2}}{5};0} \right)\) trên \(Ox\).
Vẽ đường thẳng đi qua hai điểm \(A;B\) ta được đồ thị của hàm số \(y = 5x + 2\).
b) \(y = - 2x - 6\)
Cho \(x = 0 \Rightarrow y = - 6\) ta được điểm \(C\left( {0; - 6} \right)\) trên trục \(Oy\).
Cho \(y = 0 \Rightarrow x = - 3\) ta được điểm \(D\left( { - 3;0} \right)\) trên \(Ox\).
Vẽ đường thẳng đi qua hai điểm \(C;D\) ta được đồ thị của hàm số \(y = - 2x - 6\).
Tham khảo:
a) Hàm số có \(a = 2,b = - 6;c=4 \) \(\Rightarrow - \frac{b}{{2a}} = - \frac{{ - 6}}{{2.2}} = \frac{3}{2}; y\left( {\frac{3}{2}} \right) = 2{\left( {\frac{3}{2}} \right)^2} - 6.\frac{3}{2} + 4 = - \frac{1}{2} \)
+ Đồ thị hàm số có đỉnh \(I\left( {\frac{3}{2}; - \frac{1}{2}} \right)\)
+ Trục đối xứng là \(x = \frac{3}{2}\)
+ Giao điểm của parabol với trục tung là (0;4)
+ Giao điểm của parabol với trục hoành là (2;0) và (1;0)
+ Điểm đối xứng với điểm (0;4) qua trục đối xứng \(x = \frac{3}{2}\) là \(\left( {3;4} \right)\)
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:
b) Hàm số có \(a = -3,b = - 6;c=-3 \) \(\Rightarrow - \frac{b}{{2a}} = - \frac{{ - 6}}{{2.(-3)}} =-1 ; y(-1) = - 3{(-1)^2} - 6.(-1) - 3 = 0 \)
+ Đồ thị hàm số có đỉnh \(I\left( { - 1;0} \right)\)
+ Trục đối xứng là \(x = - 1\)
+ Giao điểm của parabol với trục tung là (0;-3)
+ Giao điểm của parabol với trục hoành là \(I\left( { - 1;0} \right)\)
+ Điểm đối xứng với điểm (0;-3) qua trục đối xứng \(x = - 1\) là (-2;-3)
Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:
a: Hàm số đồng biến trên R
b: Hàm số nghịch biến trên R