K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

\(\left(a+b+c\right)^2\le\left(2b+c\right)^2\)

Xét hiệu: 

\(\left(2b+c\right)^2-9bc=4b^2-5bc+c^2=\left(b-c\right)\left(4b-c\right)\le0\)

Dễ thấy b - c < 0

\(c< a+b\le2b\)

=> 4b - c > 0

Q.E.D dấu "=" xảy ra khi a = b = c

22 tháng 5 2017

ta có BĐT \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)(chứng minh = AM-GM)

\(abc\ge\left(2-2a\right)\left(2-2b\right)\left(2-2c\right)=8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

\(abc\ge8\left[1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\right]\)

\(\Leftrightarrow9abc\ge-8+8\left(ab+bc+ca\right)\)

do đó \(VT\ge4\left(a^2+b^2+c^2\right)+8\left(ab+bc+ca\right)-8\)

\(VT\ge4\left(a+b+c\right)^2-8=16-8=8\)

Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)

13 tháng 2 2020

a) Theo bất đẳng thức tam giác ta có :
\(\Rightarrow\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\left(1\right)}\)

Ta có : \(a+b+c=2\)

\(\Rightarrow\hept{\begin{cases}b+c=2-a\\a+b=2-c\\a+c=2-b\end{cases}\left(2\right)}\)

Từ (1) và (2)

\(\Rightarrow\hept{\begin{cases}a< 2-a\\b< 2-b\\c< 2-c\end{cases}\Rightarrow\hept{\begin{cases}2a< 2\\2b< 2\\2c< 2\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}a< 1\\b< 1\\c< 1\end{cases}\left(đpcm\right)}\)

b )  Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\left(a+b-c\right)\left(c+a-b\right)\le\left(\frac{2a}{2}\right)^2=a^2\)

Tường tự ta có : \(\hept{\begin{cases}\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(b+c-a\right)\left(c+a-b\right)\le c^2\end{cases}}\)

\(\Rightarrow\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)

\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow9abc\ge8\left(ab+bc+ca\right)-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(ab+bc+ca\right)\)

\(+4\left(a^2+b^2+c^2\right)-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2-8\)

\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=\frac{2}{3}\)

Chúc bạn học tốt !!!